Comment on "Evidence for Correlated Double-Electron Capture in Low-Energy Collisions of O⁶⁺ with He"

Stolterfoht *et al.*¹ have recently claimed that in $O^{6+}(60 \text{ keV})$ -He collisions correlated double-electron capture (CDC) is of similar importance as uncorrelated double-electron capture. This claim has been based on a comparison of electron emission from $O^{4+}(2p,nl)$ states $(n \ge 6)$ and $O^{4+}(3l,n'l')$ states $(n' \ge 3)$, respectively, the former being assumed to result from CDC only. Our recent studies on total double-electron capture to bound O^{4+} states² and on electron emission from the above mentioned autoionizing states³ show that the conclusions of Stolterfoht *et al.*¹ on the importance of CDC are probably not fully justified.

First, double-electron capture into bound states has been neglected entirely, but at 60 keV impact energy involves a cross section^{2,4} of about 1.6×10^{-16} cm². With the data of Stolterfoht *et al.*¹ for double-electron capture into autoionizing states a CDC fraction of not more than 15% would be concluded. Second, the CDC processes invoked by Stolterfoht *et al.*¹ are probably not exclusively responsible for production of autoionizing O⁴⁺(2*p*,*nl*) states, which could, e.g., also result from sequential single-electron capture events during one single collision

$$O^{6+} + He \rightarrow O^{5+}(3l) + He^+ \rightarrow O^{4+}(2p, nl) + He^{2+}$$
.

The first step has been shown⁵ to account almost exclusively for a total single-electron capture cross section^{2,4} of about 1.3×10^{-15} cm². The second step involves a correlated two-electron transition which at a crossing distance of less than about $3a_0$ can populate bound $O^{4+}(2p,nl)$ states with $n \le 5$, whereas for a larger crossing distance unbound states as observed by Stolterfoht *et al.*¹ may result. Such correlated transitions or configuration interactions are rather commonly observed for electron capture from He, e.g., by C³⁺ (Ref. 6) or N⁴⁺.⁷

Finally, our studies on electron emission from autoionizing O^{4+} states³ seem to indicate that the fraction from $O^{4+}(2p, n \ge 6, l)$ states is considerably less important than that from $O^{4+}(3l, n \ge 3, l')$, and therefore quite unimportant for the total double-electron capture.

Consequently, there is some doubt about the importance of CDC in O^{6+} -He collisions. Note also that recently more general arguments have been published⁸ for the dominance of uncorrelated double-electron capture in collisions of highly charged ($q \ge 7$) ions with He.

H. Winter, ^{(1),(2)} M. Mack, ^{(1),(3)} R. Hoekstra, ^{(1),(4)}

A. Niehaus, ⁽³⁾ and F. J. de Heer ⁽⁴⁾ ⁽¹⁾Kernfysisch Versneller Instituut Rijksuniversiteit Groningen, The Netherlands ⁽²⁾Institut für Allgemeine Physik Technische Universität Wien, Wien, Austria ⁽³⁾Fysisch Laboratorium Rijksuniversiteit Utrecht, The Netherlands ⁽⁴⁾Stichting voor Fundamenteel Onderzoek der Materie Institute for Atomic and Molecular Physics Amsterdam, The Netherlands

Received 29 September 1986

PACS numbers: 34.70.+e, 34.50.Fa

 1 N. Stolterfoht, C. C. Havener, R. A. Phaneuf, J. K. Swenson, S. M. Shafroth, and F. W. Meyer, Phys. Rev. Lett. **57**, 74 (1986).

²R. Hoekstra, F. J. de Heer, and H. Winter, to be published.

³M. Mack and A. Niehaus, to be published.

⁴D. H. Crandall, Phys. Rev. A 16, 958 (1977).

 5 D. Dijkkamp, D. Ciric, E. Vlieg, A. de Boer, and F. J. de Heer, J. Phys. B 18, 4763 (1985).

⁶M. Lennon, R. W. McCullough, and H. B. Gilbody, J. Phys. B 16, 2191 (1983).

⁷M. Kimura, T. Iwai, Y. Kaneko, N. Kobayashi, A. Matsumoto, S. Ohtani, K. Okuno, S. Takagi, H. Tawara, and S. Tsurubuchi, J. Phys. B **15**, L851 (1982).

⁸P. Roncin, M. Barat, and H. Laurent, Europhys. Lett. 2, 371 (1986).