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Learning of Correlated Patterns in Spin-Glass Networks by Local Learning Rules
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Two simple storing prescriptions are presented for neural network models of N two-state neurons.
These rules are local and allow the embedding of correlated patterns without errors in a network of
spin-glass type. Starting from an arbitrary configuration of synaptic bonds, up to N patterns can be
stored by successive modification of the synaptic efficacies. Proofs for the convergence are given. Exten-
sions of these rules are possible.

PACS numbers: 87.30.Gy, 06.50.Mk, 75.10.Hk, 89.70.+c

In recent years models of neural networks have be-
come increasingly popular. ' Highly organized per-
formance characteristics of the brain, such as fault-
tolerant content-addressable memory, appear as a spon-
taneous collective property of a system of interconnected
neurons. Implementing algorithms for these networks,
which allow the utilization of these associative properties
for problem solving, is a challenging task in the context
of artificial intelligence.

The neural networks are typically modeled as a system
of N totally interconnected neurons, each having the
states S; =1 (firing) or S; = —

1 (quiescent). Neuron i,
the postsynaptic neuron, receives the potential J'jSj from
neuron j, the presynaptic one, where J;j characterizes the
synaptic efficacy. The local field of neuron i is the sum
of the contributions from all presynaptic neurons,

N

E =2 JJSJ
j 1

The dynamics of the system is defined by the determinis-
tic asynchronous spin-flip algorithm used in zero-
temperature Monte Carlo simulations. Stationary states
S =(S&, . . . , S) of the dynamics are characterized by

N

S;E;= g S;J;J.SI )0, i = 1, . . . , N
j I

For the network to serve as a content-addressable
memory, the set of prescribed patterns to be memorized
has to be embedded by the application of some learning
rule. This embedding procedure leads to synaptic con-
nectivities such that the patterns become local or approx-
imate local attractors with respect to the dynamics of the
system.

In biological as well as device contexts local learning
rules are of importance. A learning rule is local if the
change of the synaptic efticiency J;j depends only on the
states of the interconnected neurons i,j and possibly on
the postsynaptic local field Ej This corresponds to
every step of the learning procedure. Hebb's rule and its
modifications have become the most popular representa-

tives of these local rules, ' " being able to provide
storage of uncorrelated patterns without error. Although
much eA'ort has been devoted to improvement of their
storing capabilities, ' ' networks with local learning
rules fail, up to now, in memorizing correlated pat-
terns. ' ' This point severely restricts their applicabili-
ty. On the other hand, for arbitrary patterns it has been
shown that the required synaptic couplings J;j can be
calculated by means of matrix inversions. ' However,
up to the present it has not been possible to substitute a
local learning rule for this procedure.

The purpose of this Letter is to present two learning
rules which are both local and able to yield storage of
correlated as well as uncorrelated patterns without er-
rors. Each pattern is learned by repeated presentation of
it to the network in a sequence of learning steps. The
learning process is terminated when all patterns S"
= (St, . . . , Stv) fulfill the embedding condition,

EI-'w T i =1 N (3)

with a positive threshold T—1, which has been intro-
duced to ensure the local stability of a pattern S". This
local stability can easily be proven from Eq. (3) for a
large network with JJ =O(1/J1V). ' For simplicity we
choose T=1 in the following. The prescribed patterns
can be embedded into a network with arbitrary initial
configuration of synapses, JJ =J~ =O(1/vN ), e.g. , a
Sherrington-Kirkpatrick spin-glass. ' Learning rule I
which is of Perceptron type ' ' leads the network to
satisfy the set of inequalities (3) for all patterns S' after
a finite number of learning steps, whereas for rule II the
magnitudes of all fields on the left-hand side of Eq. (3)
converge asymptotically to the threshold value T =1.
We give explicit proofs for the convergence of both rules
under very weak conditions.

We first explain rule I: The learning process is started
with pattern v =1 by checking whether this pattern is al-
ready embedded in the network, i.e. , if the system (3) is
obeyed for v= l. If for example (3) is not satisfied for
neuron i, we update the synaptic bonds J;j according to
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the rule Jj J'j+6J j with

6J~i = (N —1) 'S;"SJ, for j~i. (4)

Self-couplings are always excluded, i.e. , J;;—=0, through-
out the learning process. If the condition (3) is satisfied
for neuron i, we leave the bonds JJ unchanged for

j =1, . . . , N. To proceed, we pass to pattern v=2 and
update the bonds in the same way and so on up to v=p.
This leads to a sequence of modifications of the synaptic
efficacies which all together constitute one cycle of our
learning procedure. We repeat these cycles again and
again until the embedding condition is simultaneously
satisfied for every pattern v at every site i. Our pro-
cedure is in contrast to previous learning rules where
each pattern was memorized in a single learning event.
This seems to us to be the main reason why they were
not able to give storage of correlated patterns. Clearly,
not every presentation of a pattern v results in a
modification of the bonds. Instead, a learning step takes
place only if the field 5 E does not exceed the thresh-
old. This is summarized in the equation

HAJJ
= (N —1) 'S;"SJO(I —E;"S;"), j&i. (s)

H(x) is the Heaviside function. We shall prove in the
following that after a finite number of steps the fields of
all patterns will exceed the threshold value T =1.
Thus the learning process terminates.

The proof of the convergence closely follows argu-
ments worked out more than two decades ago for the
Perceptron. Remarkably, this proof requires only the
existence of a network for which the prescribed patterns
v=1, . . . , p are stationary states, i.e., there should exist
a matrix IJ~iI with J;*; =0 and

Obviously, the learning rule (5) does not couple different
rows i of the synaptic matrix. Therefore it is sufficient to
work out the proof for a single row i. For simplicity of
presentation we restrict ourselves to the case of a tabula
rasa learning rule, i.e. , Jj 0, an empty network at the
beginning. We introduce the following abbreviations:

IJ =J;J, oJ'=S SJ".. (7)

g I,*crf & 0.

Now we assume that some pattern e does not satisfy the
embedding condition, i.e. , a learning step has to be per-
formed. We calculate the change of g IJ resulting from
this step. This yields

g li =(N —1) ' 1+2+ Incr~
iJ&I r

& 3/(N —I ):D—
Here we have used g ~, Ijcrg & 1, because the embed-
ding condition is not satisfied for pattern a. Since

g$ &

x~ is the total number of learning steps these
changes add up to

If xp denotes the actual number of times for which pat-
tern p has led to a modification of the synaptic bonds,
i.e. , to a learning step, we can write

IJ =(N —1) 'gpx~cr&~, I; =0.

Equation (6) is written as

for the total process.
If we introduce yp=xp(g&=& x "x") 'i it follows that

r

&Dgpxp g,x'x"
—

1~ Dp gpx (lo)

The last bound is obtained from the Schwartz inequality.
If we now assume that the learning process never ter-
minates, i.e. , g&x grows infinitely, we conclude that the
left-hand side of (10) becomes arbitrarily small for
y~, p= 1, . . . , p on the positive octant of the unit sphere.
So by the compactness of this set the equations

g&g~cr~~ =0 for allj ei
are fulfilled f'or some gp~ 0, P = l, , p, with g g~g~
=1. Multiplying each equation by IJ* and summing over
j we obtain

0 =g gi'g l,*~i'.
fj

This contradicts Eq. (9), since at least one g is positive.
So in fact g&x~ is bounded and the learning process ter-

min ates.
The purpose of learning rule II is to modify the synap-

tic bonds in such a way that the fields of all embedded
patterns become equal to 1:

ES =1, i=1, . . . , N.

This property of the fields may serve to discriminate be-
tween memorized and spurious states of the system in
the pattern-recognition process. As in rule I all patterns
are presented sequentially to the network. The synaptic
coe%cients are updated according to

SJi =N '(1 —E;"S;")SSJ
In contrast to Eq. (5), every presentation of a pattern
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g y 8 ~yt' = g(g y o,'—) '
a, p j a

is strictly positive for every configuration y' (a =1, . . . ,

p) which does not vanish identically. This condition is
always fulfilled, because the patterns S are assumed to
be linearly independent. The limiting values (l ~) of
the synaptic coefficients can be calculated analytically.
Solving Eq. (15) and restoring the original denotations,
we find

J;~ =N 'Q(C ')~"Si'Sf, (i 6)

leads to a synaptic modification. From (12) we see that
if BJ;~ 0, the synaptic coefficients satisfy the embed-
ding condition (11). However, this equality is obtained
only in the limit of an infinite number of learning cycles.
We show in the following that indeed the procedure con-
verges. For convenience we include self-interactions J;;.
In this case the convergence can be proven under the
weak condition that the patterns are linearly indepen-
dent. Thus up to N patterns can be stored. In case of
J;; =0 the proof is almost the same, but the sufficient
conditions cannot be formulated as simply. We again re-
strict ourselves to one row of the synaptic matrix, start
with a tabula rasa network, and use the abbreviations
(7). Equation (12) is written

N

IJ Ij+N '
1
—g It, crg oj'.

1

Analogous to Eq. (8) (but change N —
1 to N), we intro-

duce the embedding strengths x' which are no longer in-

tegers in this case. In the (I+1)th learning cycle these
quantities change according to

x'(l+ 1) —x'(l) =1 —
Qq It, og

=1 N' g xt'o—[erg
k, p

On the right-hand side of this equation all strengths xp
for P & a have been already updated, i.e. , x~=x~(l+ I)
for p & a, whereas for p ~ a the x~'s take their previous
values, i.e. , x~ =x~(l) for P ~ a. So

x'(l+ i) = i —g 8 t'xt'(I+ I ) —g 8 t'xt'(l), (i4)
p&a p&a

with the symmetric matrix 8't =N '+&crt',.crf Assum. -

ing, now, that the limit x~(l ~) exists for p
=1, . . . , p, we immediately see that x~(~) obeys the
system of linear equations

P

g 8'~x~(~ ) = 1, a = 1, . . . ,p.
p 1

Equation (14) is the Gauss-Seidel iterative method26 for
solving the linear system (15). This method converges if
the symmetric matrix B is positive definite, i.e., the ex-
pression

with

The synaptic connectivities (16) are identical to those
obtained earlier by nonlocal rules.

We have demonstrated in this Letter how to overcome
the limitations connected with the storing of correlated
patterns with local learning rules. Two simple storing
prescriptions have been presented which allow for
rigorous proofs of their convergence. Obviously, a whole
class of more sophisticated rules may be obtained by
generalizations. From a biological point of view, for ex-
ample, one may prefer a multiplicative procedure which
does not lead to sign reversals of the synaptic couplings
during the learning mode.
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