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Polarons and Bipolarons in a Model Tetrahedrally Bonded Homopolymer
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A coupled electron-lattice model of a saturated homopolymer, such as a poly(organosilylene), is intro-
duced. It shows that the states available in the polymer for the addition or excitation of electrons, or
holes, are localized intragap states that are spontaneously generated by bond-order polaron formation.

PACS numbers: 71.38.+i, 61.41.+e, 63.20.Kr, 71.50.+t

One-electron-theory models' that stress electron-lat-
tice coupling have been successful in interpreting the ob-
served solid-state properties of conjugated polymers such
as polyacetylene. In this Letter we report on an exten-
sion of this type of model to describe a saturated poly-
mer. Specifically, we have constructed a microscopic
model of a tetrahedrally bonded polymer with formula
(—AR2—)„,where 2 denotes a Group IVX atom and R
an organic side group. This type of saturated homopoly-
mer includes the polysilylenes and the polygermylenes
as well as, of course, the wide class of carbon-based poly-
mers. They have band gaps in the ultraviolet (UV).

Very interestingly, the model shows that, provided the

!
electron-lattice interaction is not so strong that scission

of the polymer occurs, the saturated polymer can support
polaron states with localized gap-state and infrared vi-

brational characteristics similar to those found in models
of conjugated polymers with nondegenerate ground
states. In particular, there is a paramagnetic polaron,
a diamagnetic bipolaron, and a charge-neutral polaron
excitation that is the relaxed photoexcitation of the poly-
mer. They involve localized regions of reduced bond or-
der and, hence, of weakened bonds. For the UV-
sensitive polyorganosilylenes, ' we estimate that the
width of the neutral polaron is only a few bond lengths,
thus providing a specific mechanism for energy localiza-
tion.

The microscopic model is defined by the Hamiltonian

H =2doN+g (Br~ '+ —,
'

MR~ . ) —Ag. (a~~. b~ +H.c.) —.g V~ J—~(a~~ b~ ~ +H.c.).

It describes N (N ~) 2 atoms of mass M whose in-
stantaneous positions and velocities in a trans chain
backbone (lying along the x axis) are denoted by Ri and

R~, respectively (j =1,2, . . . , N) It is assumed th.at the
electronic states of the backbone are derived from in-
teraction of atomic-A sp -like orbitals, y, (x —RJ) and

yt, (x —RJ t), which point along the same A —A bond
(see Fig. 1). The other atomic hybrid orbitals, pointing
along the A —R bonds, are supposed to be electively
decoupled from the a and b orbitals on account of strong
bonding with the side groups R. The matrix element
describing the interaction of the a and b orbitals is
denoted by Vj j ~ and taken to have the specific form '

V~. J ~ =Drj, where D is a constant and rj =
~ RJ—

R~ —t L. At the same time, a repulsive interaction
Uj Brj ' is assumed to exist between the same pair of
atoms, j and j—1, where B and l are constants. Togeth-
er, Vj j &

and Uj microscopically define the electron-
lattice interaction. aj and bjt are fermion operators
which create, respectively, an electron with spin o in the
a and b orbitals of the atom j. 5 denotes the matrix ele-
ment between a and b orbitals on the same atomic site
and 460 denotes the atomic sp promotion energy. The
energies in (1) are measured relative to the atomic ener-
gies and there is one electron per orbital.

The ground state of (1) is that of a covalent semicon-
ductor' with bonds of equal length r and an electron en-

ergy spectrum, 8„,given by

6„—Ao = + [V (r)+4 +2V(r)icos(&ca)] '

= ~E„. (2)

FIG. 1. The trans polymer model.

Here, V(r) =D/r, 2a =2r sin8 is the period of the trans
chain, 20 is the tetrahedral bond angle, and the allowed
wave vectors, x, are defined in the extended zone
~ xa & x. The covalent energy gap, Eg is just
2fV(r) —6]—:2a. If 6=0, the polymer consists of N 1—
independent bonds in which the electronic energy levels
are at Ao ~ V(r). If h&0, the bonds become coupled and
the charge delocalizes from them toward the atomic
sites. Minimization of the total energy per bond E(r)
with respect to r fixes the equilibrium bond length ro ac-
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cording to

B/rp = [4V/l(N —1)]g„(W„/E„), (3a)

a result of u(x), v„ is the occupation of the nth level,
and Kp is the unscreened force constant given by the first
term of (4). A„and B„are normalized according to

and leads to the result

Eb = 2hp —[2/(N —I ) ] g „E„[1—(2 VW,/l )E„
(3b)

J (dx/a)[
~
A„9x)

~
+

~
B„(x)

~
] =1,

and the total energy of the polymer is

E =g„v„e„+(Kp/2)J (dx/a)u(x)',

(6)

(7)

e„A„(x)=Q (x)B„(x),

e„B„(x)=Q+ (x)A„(x),

v(x) = —(2y'/Kp) g. [p. (x) —p. (

where Q ~ (x) are the operators

Q+-(x) = —a —(a /2) VV„+c(x)~ VaV„,

and p„(x) the local bond orders

p„(x) = [a„*(x)B„(x)+c.c.]/2.

(sa)

(Sb)

(5c)

(5c) is the potential v(x) = yu(x) felt by the electrons as

for the binding energy per bond, Eb =E(rp), where
W„= V+ 6 cos(xa ) and V—:V(rp). Similarly, K(r)
=6 E/itr may be evaluated to give

2(l —2)P ~ W„E„ i 2Y PA2E„3, (4)3(N —I ) „(N—1)

the bond stretch force constant, K=K(rp), where
A, =csin(tea), and —

y and P are respectively the first
and second derivatives of V(r) evaluated at rp The fr.e-
quency of the transverse optical (TO) phonon of the po-
lymer is cpTo=(4K/M)' cosO. The sums in (3a), (3b),
and (4) are easily evaluated in terms of elliptic func-
tions. Together with the formula for Eg they may be
used, in principle, to determine the four microscopic pa-
rameters 8, 1, D, and 6 from the experimentally observed
values of rp, Eb, K, and Eg.

We now consider the states available in the polymer
for the addition or excitation of electrons or holes. Be-
cause of the nature of the ground state we anticipate po-
laron formation that involves bond-length relaxation. If
we require the latter to leave the length of the polymer
unchanged, we are led to consider a static displace-
ment pattern of the form of a TO phonon, i e. , yz=( —1)~(uj/2cos8), where y~ denotes the displacement
in the y direction of the jth atom from its ground-state
equilibrium position Rz (see Fig. 1). If the bond relaxa-
tion (elongation) amplitude ut is sufficiently small and
only slowly varying over interatomic distances, we may
expand (1) about [Rjj and express the orbital ampli-
tudes for electronic states with levels c„close to the gap
edges as at „=(—1) A„(x) and b„j.= —( —1) B„(x),
where x denotes an arbitrary point along the polymer
axis in a continuum description, ja x. The electronic
states and uj =u(x) are then found to be determined by
the simultaneous solution of

where in (6) and (7) the integral extends over
L =N/a ~, and the levels e„are measured relative to
Ap.

We have derived polaron solutions of (5) which have
the form u(x) =(e /sty) sech (x/g~), where e=(AV)'t
x(a/g~), and are accurate to order (a/g~) (V/2a)

The corresponding spectrum of electronic states
consists of the following: (a) A pair of localized intra
gap levels with energies +' (a —e ) 't =—~ s~, and wave
functions 2 ~(x) =fp(x+xp) and B+ (x) = w fp(x—xp), where fp(x) =(a/4(~) 't sech(x/g~) and xp
=(V/2a)a. The polaron half-width, gz, is

g~ =(~(v) =(2Kpav/ay')(a/v).

We have introduced v=v++2 —v —,where v+ and v

are the electronic occupations of the upper and lower in-
tragap levels, respectively. Note that e is proportional to
v. (b) Conduction- (+) and valence- (—) band states
with energies 6 + (k) = ~ [a +A V(ka) ] 't (k &0),
and wave functions 3+ k(x) fk(x+xp), B+ k(x)= +.fk(x —xp), where

fk(x) =(a/2Lk) 't exp( —ikx) [kg~+itanh(x/g~)]

and Lt, =L[1+(kg~) ]+2(~. The wave vectors k are
obtained from kL =2zz+Ok, where z=0, ~ l, ~ 2, . . . ,
and Ok =2tan '(I/kg~) is the phase shift experienced
by the band states in their transmission through the re-
gion of the polaron.

The quantity k = v(y /4Kph) —v[V/4d, (l —2)] is a
measure of the strength of the electron-lattice interac-
tion. We note that, formally, if X (V/4d, ) 't & 1,

0, the energy of an unpaired orbital. This suggests
that if X= l, the addition or excitation of an electron or
hole will cause scission of the polymer.

The presence of the polaron removes precisely one
state per spin from the occupied valence band. Conse-
quently [and as may be directly verified from Eq. (9)],
there is a valence-band charge deficit in the region of the
polaron that is equal to the charge of two electrons. '

The total charge, Q, of the polaron is thus found to be
Q =e(v~+ v —2), where e denotes the charge on an
electron. Since either intragap level may accommodate
zero, one, or two electrons, it follows that there is a
paramagnetic polaron (v=1) with charge ~e, a spin-
less bipolaron (v=2) with charge + 2e, and a charge
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neutral polaron (v=2). The occupancies of the intragap
levels, the spin states, and the stable excited (v=3, 4)
states of these polarons are depicted in Table I. The
neutral polaron corresponds to a relaxed electron-hole
pair excitation and may be photogenerated in the poly-
mer. Free charges are not, therefore, directly created by
photoexcitation. In calculating the polaron formation
energy, E~(v), from Eq. (7), we find that the (down-
ward) shifts of 8 (k) relative to their ground-state
values (due to Ok) sum precisely to s~ per spin, thus, re-
markably, exactly canceling the energy of the lower in-

tragap level —s~. In consequence E~ (v) is just

Ep(v) =(v/3a)e'(v)+ vta' —e'(v)] ' ', (10)

II, =roros(s+5)/(s +5s+4),

where s =0,2, 4, . . . . This spectrum consists of a zero-
frequency translational mode (s =0) and a quasiband of
localized modes beginning at 0.88coTg and extending up
to just below coTO. It implies a quantum correction to
E~(v) of order —hroro/2. If we denote by m the mass
of an electron, the adiabatic translational masses of the

TABLE I. Characteristics of the polaron states of the sa-
turated homopolymer.

Charot. ~t.this t..XCi ted
util tC

from which the polaron binding energy, sz(v)= —vg2(v)/6a, is seen to vary as v3. There is, therefore,
a strong tendency for two polarons on the same chain to
form a bipolaron.

An approximate calculation of the vibrational modes
of the polarons may be carried out by the introduction
of bonding and antibonding states, J2y„+' (x)
=A„(x) + B„(x),for the electrons and then, in the con-
sideration of their response to small oscillations about
the static polaron solutions, neglect of the coupling be-
tween y„+ and y„. The problem may then be mapped
on to the corresponding problem for the Holstein large
polaron, "with the result that the frequencies, A„of the
odd-parity (infrared) modes are

polarons are

( )
~ g ~

m + 4es(v)M
15(aya)'(~V) '" ' (12)

where the second term has been obtained by boosting the
static polaron solution and calculating the resulting ki-
netic energy of the lattice from (1).

For the poly(organosilylenes) (PS's) the observed en-
ergy, Eg(N), of maximum UV absorption (—4 eV for
N ~) exhibits a striking dependence on polymer
length, aN. ' This is consistent with the electronic
transitions occurring between delocalized bonding and
antibonding states of the Si backbone. ' For finite N,
(2) leads to the result E~(N) =2[a +2VA[I —cos(rr/
N ) ]] '/ for the energy gap, and is able to account for the
N dependence observed' for poly(dimethylsilylene) for
N=3 to 24 if V=3.3 eV and 5=1.3 eV. Further, with
the experimental values' rp=2. 34 A and %=9.5 eV

2, we obtain y=2V/rp=2. 8 eV A ' and, from (4),
Kp —9.9 eV A 2. These values lead to the estimates of
g~/a, u(0)/rp, eg, mp/m, and ds, =2(a —e~) that are
presented in Table II. In the calculation of mz from
(12), M was taken to be the mass of the dimethylsilylene
unit. It is seen that the polaron (g~ —5a) is estimated to
be weakly bound. For adiabatic motion, i.e., for temper-
atures T« —

mdiv p/2k' —600 K, where vp =4(zroro, it
would behave like a free electron or hole. This is con-
sistent with the observations that the PS's support hole
transport. ' ' On the other hand, the narrow width
(~-2.5a found for either the bipolaron or neutral pola-
ron suggests that formation of the latter excitation would
be a very efI'ective mechanism for energy localization
and may well be the precursor of polymer scission. The
estimate h, e, =0.32 eV for the corresponding Stokes shift
is in agreement with the values observed' for the UV-
sensitive (alkyl) PS s. Numerical minimization of the
energy of the discrete model (1) with a sech [(j—jp)(a/g~)1 Ansarz for u/, and with B and i deter-
mined' from (3a) and (4), confirms the results of Table
II for the polaron but indicates a significantly narrower
width, gz —1.65a, for the neutral polaron. (Narrower
widths for the charged polarons also can be expected if
the electronic polarizability of the polymer medium is
taken into account. )

Photoinduced absorption measurements on the PS's
should be able to detect the intragap levels of the neutral
polaron. While photoexcitation of a single chain does

TABLE II. Polaron parameters for poly(dimethylsilylene).

'Each solid circle denotes an electron. The gap states are "screened"
by a valence band charge deficit of two electrons.

g~/a
u (0)/rp

—~, (eV)
rrtp /l71

~W, (eV)

v=1

5.3
1.0x 10
1.3 x 10

1.7
7.8 x10

Y=2

2.6
4. 1 x 10

0.10
24

0.32
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not create free charges, interehain photoexcitation in the
presence of an electric field would lead to the generation
of free polarons on diff'erent chains and, hence, to a pho-
tocurrent. Also, light acceptor or donor doping of the
polymers should lead to a system of infrared-active,
paramagnetic, dopant -pinned polarons. At a higher
dopant concentration this system could exhibit a transi-
tion to a diamagnetic bipolaron lattice or liquid.

We are currently extending (1) to include the e[I'ects
of the side groups R and, hence, of full ground-state
band structures for particular group IVA homopolymers.
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