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The static potential is studied in Helfrich and Polyakov s model of smooth strings. For large separa-
tions R, the potential is linear in R with corrections of order 1/R. While the physical string tension is re-
normalized by the extrinsic curvature coupling, the coefficient of the 1/R term has Luscher s universal
value to any finite order in the loop expansion. For very small separations, the leading term in the poten-
tial is proportional to 1/R, with a coefficient exactly twice that of the Luscher term, and with corrections
that are logarithmically small.

PACS numbers: 11.17.+y, 12.40.Qq

There are many indications that color flux tubes in QCD can be described by an effective theory of strings. Po-
lyakov' has suggested that, for a realistic string model of hadrons, the Nambu action must be supplemented by a term
that depends on the extrinsic curvature of the world sheet. This term favors smooth string configurations over those
that are sharply curved, and was first investigated in the context of fluid membranes by Helfrich and others. There
have been several investigations of its effects in string theories. In this note we study the static potential which would

be generated between a heavy quark and antiquark if the color flux tube were modeled by a smooth string.
The action for this model of smooth strings is

S=Mo„I (detg)' d j+(1/2e )„(detg)' [h(g)X"] d g. (1)

The string coordinate X" is a vector in D (Euclidean) di-

mensions, g,b =el,X"clbX„ is the induced metric on the
surface, and d, (g) the corresponding Laplacian. The
first term in 5 is the Nambu action, with bare string ten-
sion Mo. The second is the extrinsic curvature term in-

troduced by Helfrich and Polyakov. The coupling con-
stant e for the curvature term is dimensionless and

asymptotically free. '
The behavior of the static potential V(R) for the

Nambu model is an old story. Classically, it is linear:
V =MOR. The parameter of the loop expansion is

I/MozR, so that the one-loop correction is proportional
to 1/R. It was first computed by Liischer, Symanzik,
and Weisz, and on very general grounds is expected to
be universal. The loop expansion can be used to calcu-
late V(R) at large R, but for small R a nonperturbative
method is required. Alvarez showed that to leading or-

I

der in 1/D, where D is the number of dimensions, V(R)
is imaginary for R less than a critical distance R, . This
behavior was confirmed by Arvis, who obtained the ex-

act solution for V(R) in the critical dimensionality,

D =26.
To understand the nature of the static potential for

smooth strings, we start by expanding to one-loop order
about a flat surface. Amazingly, this gives us the lead-

ing behavior of the potential at both very large and very

small distances. Choose a physical gauge in which the

world sheet is parametrized by the distances in space (r)
and time (t). Consider fluctuations of the world sheet

about a flat surface of length T and width R, for T&)R.
In such a physical gauge, ghosts can be ignored. In-

tegration over the D —2 transverse degrees of freedom

gives

V(R) =MoR+ [(D —2)/2T]trln[ —e 8 ( —rl +e Mo)], (2)

where —8 is the Laplacian in flat space and the trace is over functions that vanish at r =0 and r =R. The divergent
trace can be defined by analytic regularization, which introduces a renormalization mass scale p and yields

2 DV(R) =M'R 1+ '
4x

1 1 l ep+ —,
' ln + @+2S(A)3A 4n

(3)

where A =eMoR/tr, y is Euler's constant, and S(A) is the convergent sum

S(A) = y (n'+A') '1 A

A 2' (4)
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Expanding in powers of 1/R, we find that for large sepa-
rations the static potential behaves like

~(D —2) 1V(R) =M R+ Vo- —+
24 R

(s)

1 1

Mo —i9

1

—6+eM
The infrared behavior of smooth strings is described by
an effective theory of interactions between these massless
and massive modes. For the Nambu model, the crux of
Liischer's argument was that corrections generated in

where M is the physical string tension and Vo= —(D
—2)eM/8. The subleading terms in (5) arise from the
f'inite-R dependence of the free energy for D —2 massless
fields and D —2 fields of mass eM. The massive fields
contribute the zero-point energy Vo, while the massless
fields produce the 1/R term with a coefficient that is

identical to that found by Liischer, Symanzik, and
%'eisz in other string models.

In higher orders, both M and Vo will be further re-
normalized by the dimensionless curvature coupling e .
On dimensional grounds there could also be further
corrections to the coefficient of the 1/R term. In fact, to
any finite order in e, there are not such corrections.
This follows essentially from Luscher's original argu-
ment for the universality of this coefficient. Consider
the propagator for small transverse fluctuations in L"
about a flat surface, which can be written as the differ-
ence of propagators for a massless and a massive mode:

2

—6(—9+eM )

higher orders of the loop expansion would be less in-

frared singular than those at two loops. He showed that
the two-loop correction did not have a term proportional
to 1/R, and therefore the higher orders could not either.
The extension to the case of smooth strings is immediate.
It is necessary to add the massive modes and the new in-

teractions generated by the curvature term. But both

only produce diagrams that are less infrared singular
than those of the Nambu model. For the massive modes,
this is simply because they are massive. For the new in-

teractions, it is because they necessarily involve two more
derivatives than the corresponding Nambu terms.
Presumably, a more elegant argument could be given by
conformal field theory. We have checked explicitly that
the two-loop correction to the Luscher term vanishes to
leading order in 1/D. The results of this calculation are
given below in (15).

How does the static potential behave for small separa-
tions? If R is very small, it should be possible in (2) to
neglect the term e Mo, so that the 1/R term should be
t~ice that at large R. Indeed, the small-R behavior of
the one-loop result (3) is V(R) ——zr(D —2)/12R. It is

important to ask whether there are logarithmic correc-
tions, such as lnR/R, which might change the dominant
behavior at small R. To answer this, we can set MD=0,
and view the theory as if it were a massless gas at a tem-
perature proportional to 1/R. This analogy is not exact,
for the boundary conditions at finite temperature are not
the same as those here, but these differences do not af-
fect our qualitative conclusions. V(R) is like the free
energy at the temperature 1/R, with the 1/R term as the
ideal-gas term. With use of this analogy, it is possible to
show that the free energy of this nonideal gas for
R « 1/p is of the form

V(R) ——R '[z(D —2)/12+a~e +a~a2e ln(pR)+ ], (7)

where the coefficients a~ and a2 are constants that de-
pend only upon the dimensionality D. As was of con-
cern, a term lnR/R does appear at order e . Fortunate-
ly, we can invoke the known asymptotic freedom of the
theory' to conclude that these logarithms are innocu-
ous. At a distance R, the running coupling e (R) is

e'(R) = (8)
1
—(De /4')ln(pR)

so that the constant aq in (7) must be a2=D/4'. The
renormalization group can be used to resum the series as

V(R ) ———~(D —2) (9)
R 12

+.
a21n(pR)

Thus corrections to the ideal-gas term of (8) are loga-
rithmically small. The coefficient a~ has been computed
to leading order in the 1/D expansion, and is given
below in (18).

In passing, we note that a successful fit to charmoni-
um spectroscopy is attained by the model of Eichten et

a!.' with the potential V(R) =M R —k/R. If we take
the 1/R term at small R from (9), we find k =rr(D —2)/
12 =0.524 for D =4. It is amusing that from spectrosco-
py, Eichten et al. find k =0.52.

We now turn to a large-D expansion of the potential
for smooth strings to verify some of the general con-
clusions made previously. The large-D expansion has
also been applied by Alonso and Espriu and by David to
investigate other aspects of the smooth-string model.
This expansion is formulated by our taking the parame-
ters of the theory to scale with D as follows: Mo D,
e —1/D, and p —D'~ . The need for rescaling of the re-
normalization scale parameter p with D will become
clear later. Following Alvarez's treatment of the Nambu
string, the large-D limit of the static potential V(R)
can be expressed as the saddle point of an effective po-
tential W(R) that depends on four functions of r: the
deviations ao(r) and o~(r) of the diagonal components
goo and g» of the metric from unity, and a pair of
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Lagrange multiplier fields ap(r) and a~(r). This effective potential is

' 2
D goo

W(R) = dr MpA+ — E —
2 Mp (apcrp+ a~o~) + J dcotr lnG,dp A dr 4~ —oo

(io)

where the operator 6 is

6 =Mp d d 2 1
at +map +

dr dr e

d d 21 1E +ho-
dr dr E

d d 21E +&@ —,
dr dr E

and A and E are combinations of op and o~ defined by 1+op =AE and 1+ cr~ =A/E.
The physical string tension M can be determined by study of the effective potential at infinite R, where it takes the

form W(R) =M R. Translational and rotational symmetries guarantee that the saddle point will have the form
ap(r) =cr~(r) =o and ap(r) =a~(r) =a, where o and a are constants. The effective potential reduces to

DR t z 1 (co )W'(R) =MpR{1+cr—aoj+ ~ d coin Mp2am2+
8K26' ' e2 1+ (i2)

If the divergent integral is defined by analytic regularization, the result is

W(R) =Mp2R [I + cr —acr —Xa(I + o) [21na+In(1+ o) +21n(eMp/p ) —2]], (i3)
where X:De /16m. —The saddle-point equations for a and o can be solved order by order in X. Evaluating (13) at the
saddle point, we find

M =M [ I +X (2 —21) + X '(4l ' —2l ) + (i4)

where l =In(eMp/p ).
We next consider the static potential at finite R. The functions a;(r) and cr;(r) at the saddle point of the effective

potential (10) need no longer be independent of r. In the Nambu model, Alvarez showed that they were constant ex-
cept for discontinuities at the end points r =O,R. One should not expect this to remain true in the smooth string mod-
el, because the extrinsic curvature term is more sensitive to these discontinuities. It would be extremely difficult to find
this saddle point for arbitrary coupling, and therefore we restrict out attention to small De . The large-D expansion is
then no more than a convenient way of organizing certain terms in the loop expansion. We have computed the poten-
tial to two-loop order in this limit, but since the calculations are rather involved, we merely quote the results here. At
large R,

' 2

V(R) =M R+ Vp- xD 1 1 xD
24 R 8 12

1 3z 1

10 eMR
(is)

where the physical string tension M is given in (14) and the constant term is

Vp = (D/8)eMp[1+ k[3m 7 —4I]].

As predicted, there are no corrections of order De to the 1/R term. '' Note also that if we set e =~ in (1S), we recov-
er the first few terms in the expansion of the large-D limit of the Nambu potential

V(R) =M R[1 —(AD/12)/M R ] '

At small R, the potential to two-loop order is

V(R) = —(AD/12)(1+4k)/R+Mp2[l+2XL+k [4L +8 —
—, x —

—, g(3)]}R,

(i7)

where L =in(ep R /4x )+2@ and g(3) =1.202. The
correction to the coefficient of the 1/R term is indeed of
the form (7) with a~ =D/4x to leading order in 1/D.

We have determined the behavior of the static poten-
tial for smooth strings, for both large R and small R, and
verified our results in the large-D limit by explicit two-
loop calculations. For large R, the coefficient of the 1/R
correction to the linear potential has the universal value
predicted by Luscher, with no corrections to any finite

order in the loop expansion. For small R, V(R) behaves
like 1/R with a coefficient that is twice Liischer s value.
The corrections to this coefficient are logarithmically
suppressed by the asymptotic freedom of the extrinsic
curvature coupling. Over intermediate distance scales,
V(R) will have a complicated dependence on the extrin-
sic curvature coupling e, but we see no reason why it
should not be well defined and physical over all distance
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scales, as long as e is sufficiently small. This is in

marked contrast to the Nambu model (e =~), where
V(R) is imaginary for R less than R, . Since the ex-
istence of R, in D =26 can be related to the tachyon in

the mass spectrum, ' this suggests that the spectrum for
smooth strings may be free of tachyons for small e .
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