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We present a method for calculating zero-frequency, spatially varying response and correlation func-
tions around a magnetic impurity in metals. We illustrate the procedure, which involves a combination
of perturbative scaling and nonperturbative renormalization-group methods for the spin- —,

' Kondo im-
purity. We explain the factorization of the temperature and spatial dependence of the Knight shift ob-
served in NMR experiments.

PACS numbers: 75.20.Hr, 76.60.Cq

In this Letter we use perturbative, thermodynamic
scaling theory ' to develop a method for calculating
zero-frequency, spatially varying response functions and
correlation functions involving spin and charge densities
around magnetic impurities in nonmagnetic metals.
Suck functions are experimentally accessible. For exam-
ple, spin-density response functions at zero frequency
have been measured from the new satellite NMR lines
that arise as a result of the extra Knight shifts induced in
the host metal (e.g. , Cu) by magnetic impurities (Cr,
Mn, or Fe). A notable feature of the experimental data
is the factorization of the spatial and temperature depen-
dence of such response functions (see below), notwith-
standing the Kondo eff'ect. We employ our method to ex-
plain this factorization in the context of the spin- —,

Kondo Hamiltonian. We also show that this factoriza-
tion can only be approximate and discuss the accuracy
with which it is obeyed.

Consider the spin- —,
' Kondo Hamiltonian Hx(Dp)

given by

Hy(Dp) =H ](Dp) JpS's(0),

where the first term describes a band of conduction elec-
trons with bandwidth 2DO, S is a spin- z operator
representing the impurity at the origin, and s(0) is the
conduction-electron spin density at the impurity.

We will focus on the zero-frequency response function
C(r, T) given by

the main resonance line due to the Cu nuclei far away
from the impurity. Cu nuclei near a magnetic impurity
produce weak resonances, called satellites, in the tail of
the main resonance, with a Knight shiA given by A+hE.
One has ' '

AK =C(r, T) —K.

For short distances (kF
~
r

~
& 10) the behavior of C(r, T)

depends on the details of the band structure of the host
metal. For simplicity, we will assume an isotropic band
with a constant density of states po cut oA at ~ Do about
the Fermi level, and a linear dispersion relation
k, =kF+e/vF, where vF is the Fermi velocity.

Our method for calculating response functions such as
C(r, T), in outline, is as follows: We employ the thermo-
dynamic scaling procedure to eliminate iteratively the
high-energy (near the band edge) electron and hole de-
grees of freedom and reduce the cutofI from Do to D, but
in such a way as to preserve the free energy. This gen-
erates an effective Hamiltonian H(D), and correlation
functions evaluated with Hy, (DO) are linear combina-
tions of correlation functions evaluated with HK(D).
When the bandwidth is D the most localized state that
can be formed at the origin has a spatial width O(vF/D)
which is much larger than r if rD/vF« l. Then the
correlation functions evaluated with Hy. (D) reduce to lo-
cal correlation functions. Hence, we get a result of the
form

C(r, T) =((s, (r);gdS, +g,s, ))H (D,), (2) C(r, T) =g, f;(r)C;(T), . (4)

where gd and g, are the impurity and electron g factors,
s, (r) denotes the conduction-electron spin density at r,
and s, denotes the total spin density of the conduction
electrons. C(r, T) is directly related to the extra Knight
shift for a host nucleus at r. Let K denote the Knight
shift of the pure host, i.e., it determines the position of

i.e. , the correlation or response function of interest is a
sum of terms which are products of functions of r (which
are essentially independent of T) multiplied by local
correlation or response functions C;, involving operators
with the same symmetries as C, evaluated with HK(D).
These local correlation functions contain essentially all
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the temperature dependence. Depending on the quantity
at hand, one or more of these terms can dominate. We
show that in the case of the Knight shift, hK is dominat-
ed by a single product, and hence it factorizes; if no sin-

gle term dominates, factorization fails to occur. Further-
more, we show that the temperature-dependent part of
the dominant term in hK is proportional to the suscepti-
bility. We emphasize that even though perturbative
methods have been employed, the factorization when it
occurs is valid at all low T. This is because the condition
rD/vF((1 can be satisfied for D in a regime in which

perturbative scaling and the form in Eq. (4) are valid,
and given factorization at that stage it persists for all

H(Dp) =HK(Dp) h (gdS, +g,s, ) —h ~s, (r). (s)

We label the conduction-electron operators by their
energy e and k instead of k and thus write the Hamil-
tonian as

lower T. However, the T-dependent factors may have to
be computed by nonperturbative methods such as the
Wilson numerical renormalization-group method.

We now present some more details of our scheme for
computing C(r, T). The response function C(r, T) can
be expressed as a zero-field second derivative of the free
energy F with respect to h and h~ of the following Ham-
ilton ian:

t D0
H(Dp) =„.sc,k„c,k„——,

' JpS [y„(0)a» y„(0)]—hgdS, —hg, s, —
—,
' h~y„(r)cr„'„y„(r),

where

r D0
yt(r) =„.ct eikk r

P J g~ ekp,

rD0 ~ rD0
podex' dnk/47r

(7a)

Our procedure involves two steps. First, we derive the elfective Hamiltonian H(D) with bandwidth D Next we re-.
late C(r, T) evaluated with H(Dp) to response functions evaluated with H(D).

In the process of perturbative scaling the Hamiltonian evolves from H(Dp) to a D-dependent eA'ective Hamiltonian
H(D) with new couplings but so as to preserve the free energy to terms O(exp( —D/T)) To order h, .h ~, and hh~, at
the level of second-order scaling, the efI'ective Hamiltonian assumes the following form':

H(D) =„J. [ec,k„c,k„] —
2 J(D)S y(0)oy(0)+Ep+ [ —

ppg, /2+E~lhh~+S, [Uph+U~(r, D)h~+Uz(r, D)hh~]
kp

+h
~ IK~(r, D)S, yt(0) y(0) —

—,
' J~(r,D) yt(0)cr, y(0) ——,

' K, (r, D)S, [yt(r) y(0)+ yt(0) y(r)]

—
—,
' J„(r,D)ie " S [yt(r)cr„y(0) —yt(0)a„y(r)] ——, y (r)cr, y(r)j. (8)

Here J(D) is the scaled, effective J determined by

DdJ/dD =ppJ (D)

The recursion relations for the most important of these couplings are

(9a)

—DdK, /dD = poJJ~+ 2~ poJ(PD —0 —D), —

—DdJ„/dD = —
—,
' po(JJ~+ JK&)+ r~ poJ(PD 0 —D).

(9b)

(9c)

—DdJ//dD = ——p, (yD —
y D)(JJ r~ JK ), -

pD
dU)/dD=poJ de/D+e[2J&J+JJ~(pD+p p —D Ip — )+J(/(Dip — +I/ —DQ )],

(9d)

(9e)

where

pD =sinkDr/kDr, k ~D =kF ~ D/&'F.

The initial conditions for solving (9a)-(9e) are J(Dp)
=Jp, Up = [gd+ge (ppJp) '(ln2)/4], all other coupling
constants zero. It is through pD that the coupling con-

stants develop their r dependence. The recursion relation
for E~ is complicated and will not be needed in detail.

Since the scaling procedure preserves the free energy
F, we can calculate C = —r) F/Bh Bh ~ using H(D) given
by Eq. (8) instead of H(Dp). Since the original Hamil-
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tonian is spherically symmetric we perform an angular average over r" and obtain C(r, T) W. e assume that the band-
width D has been reduced so that rD/v j«1 for the r's we are interested in. [rD/U j=k jr(D/2Dp) «1 is easily
satisfied" for kjr510 if D =10 Dp. If, for example, T, TK —10 Dp the scaling relations are still valid. ] Hence,
we can replace k,r by k jr and consequently Ilr(r) by (sink jr/k jr)III(0) =pjy(0). We conclude that

C(r, T) —
2 g,pp= —EI+Up[UI((S, ;S,))H (D)+(KIItIF KI)((S,;S, IIr (0)IIr(0)))H, (D)

+ —,
' (1I+yj)((S, ; IIIt(0) o, y(0)))H„(D)l.

((O3» =—((S„yg(0)o, yD (0)»H„.

We expect that the last term is down by D/Dp and can
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FIG. 1. Spatial dependence of the extra Knight shift F(r)
given in Eq. (11). FI is the first-order (in Jp) approximation.
F(r ) includes higher-order contributions. The calculations
were performed for pIIJII= —O. l. The ordinate is in units of

l UII l
defined in the text.

Equation (10) exemplifies the result stated earlier [Eq.
(4)]. We now argue that the second term in the sum
dominates the other term, and, hence, dK/K factorizes.
First with the use of the recursion relations for E~ and
UI it is straightforward (though tedious) to show that
the constant term E is down by a factor of max[(T/
Dp)ln(Dp/D), (Tx/Dp)ln(Dp/D)] compared to the sec-
ond term. This factor is at most a few percent for
reasonable values of T. Next particle-hole symmetry can
be invoked to show that the third term vanishes. Third,
the last term can be neglected on the basis of the general
grounds that terms with larger numbers of electron
operators will be down by factors of D/Dp, one for each
pair of electron operators. To see this note that Ilr(0) as
defined by (7a) contains only energies less than D and is
not normalized. Let yD(0) =(2ppD) ' yD(0) be the
normalized annihilation operator at the origin, where we
have added a subscript to emphasize that the operators
refer to a reduced bandwidth D. Thus the last term is
proportional to (D/Dp)((03)), where

be neglected. We have confirmed this by explicitly cal-
culating ((03)) with the use of the Wilson renormaliz-
ation-group method, thus providing the first nonpertur-
bative calculation of this response function. Finally we

C(r, T) ——g,po =UoU ((S„S,)) =F(r)E(T). (11)

We have computed F(r) from the recursion relations
for Up and UI, it is displayed in Fig. 1. We denote F(r)
evaluated to first order in Jo by F], this is essentially of
the Ruderman-Kittel-Kasuya-Yosida form except for a
change of sign. The other terms which account for part
of the O(J ) contributions, as seen from Fig. 1, are im-
portant only at the quantitative level (—10%). Thus we
have shown that the experimental observation of factori-
zation can be understood from first principles for tem-
peratures T 10TK. As discussed earlier this is valid
only if vj/r»(T, TK). Also, factorization obtains only
approximately, only to the extent that one of the terms in

Eq. (10) dominates. Nonperturbative methods can be
used to compute the deviations from factorization as
well, when they are important.

We have also worked out the charge density and
(s(r) S) for the Kondo problem and extended our
method to the Anderson model' which includes spin and
charge fluctuations. These will be reported elsewhere.
The extension of the perturbative part of the calculation
to a realistic model with higher spin can be performed
and is under investigation.

In summary, we have developed a procedure for calcu-
lating zero-frequency response functions and correlation
functions for magnetic impurities in metals. The method
uses a combination of perturbative scaling that extracts
the spatial dependence and nonperturbative methods
such as the Wilson renormalization-group technique to
calculate local correlation functions and extract the T
dependence. We have used it to demonstrate factoriza-
tion of the Knight shift observed experimentally.
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