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Number of Stable Points for Spin-Glasses and Neural Networks of Higher Orders
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We study the number of stable points for spin-glasses and neural networks of higher orders, i.e., with
Hamiltonians given by an algebraic form of degree d. For spin-glasses, we derive a rigorous exact ex-
pression, in the thermodynamic limit, assuming long-range independent exchange Gaussian interactions
among sets of d spins. For neural networks we introduce several upper bounds on the number of pro-
grammable stable states, according to diferent storage schemes.

PACS numbers: 75.10.Hk

In recent years, considerable progress has been made
in the study of disordered systems like spin-glasses. In
addition, several models' for large interconnected net-
works of neurons with emergent collective behavior have
been proposed by use of ideas borrowed from statistical
mechanics. Applications ranging from content-address-
able memories and new integrated circuit designs to op-
timization and learning algorithms have been partially
investigated. The dynamics of spin-glasses can be used
to perform computations such as error correction and
nearest-neighbor search, and information can be stored
by sculpting of the energy valleys of these systems.
Along the same lines, interesting connections between in-
tractable combinatorial problems and statistical mechan-
ics based on the landscape of the free-energy function
have resulted in new optimization algorithms (simulated
annealing).

With the assumption of a system of N Ising spins
x; =+ l, most of these studies are based on a classical
quadratic Hamiltonian of the form

H(x) = —
—,
' g, , T;,x;x,

Neural networks of this sort, however, have several limi-
tations. As an example, the number of prescribed fixed
points that can be realized in such systems is of the order
of %. To achieve greater flexibility and programming
capability several authors have noticed that Hamil-
tonians of higher order, i.e., defined by an algebraic form
of degree d, could easily be introduced. Moreover, such
forms arise naturally in optimization problems, for in-
stance, and can be implemented in optical and electronic
circuits in a fairly simple fashion.

In the following, we first precisely define such higher-
order systems. We then analyze the number of stable
states in two very distinct situations. We start with the
long-range spin-glass case at zero temperature, where
the coefficients of the Hamiltonian are assumed to be

where the TI are real coefficients indexed by I in J. Fac-
toring x; we can write

We start from an arbitrary configuration and let the
system evolve by a sequence of single spin flips, involving
spins which are misaligned with their instantaneous
"molecular field. " In other words, we have the evolution
rule

x;+=sgn 'g T x
,i E I

(2)

This can be seen essentially as a zero-temperature
Monte Carlo (or Glauber) dynamics. Because of the
monotonicity of (1) under the rule (2) the system always
reaches a stable state where the relation (2) is satisfied
for each one of the N spins. This form of exchange in-
teraction lends itself to natural extensions of spin-glass

random independent, identically distributed (i.i.d. )
Gaussian variables. We prove a precise general formula
which gives the number of such points in the thermo-
dynamic limit (N ~). We proceed with the neural-
network case, where the coefficients are carefully con-
structed according to a certain storage rule in order to
force a prechosen set of vectors to be among the stable
states of the network. We state upper bounds on the
storage capacity of these systems under diferent storing
strategies. Detailed mathematical proofs will be given
elsewhere.

Let 2 be the family of all subsets of cardinal d of the
set I1,2, . . . , N}. Therefore,

~
2

~
=(d ). For any subset

J of I1,2, . . . , NI, let x =Qj+ Jxj. We can consider
the system described (up to a multiplicative constant) by
the homogeneous Hamiltonian of degree d,
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formulations as well as to certain neural-network models.
In the next two sections, we will consider the number of
stable points from these two difterent perspectives.

Higher ord-er spin gla-sses .L—et Tt be i. i.d. A'(0, 1),
i.e. , independent, identically distributed normal random
variables with zero mean and variance 1. Let F~ be the
expected number of stable states. The purpose is to esti-
mate F~, for N large. We generalize a result of Ed-
wards and Tanaka and improve on their precision with

a technique used by McEliece and Posner for the usual
case d =2.

We can write F~ =2 P~, where P~ is the probability
that a given state x is stable. Without any loss of gen-
erality we can assume x =1,1, . . . , 1. Therefore, denot-
ing probabilities by the symbol Pr, we have

method of equivalent Gaussians' to estimate the num-
ber of fixed points. Let YQ, . . . , Yjv be N+ 1 i. i.d.
Ã(0, 1). Construct lV new Gaussian variables V; with

the same properties as the variables 5; by letting

V; = ajvV;+P tvt'o, i =1, . . . , lV, (4)

dt,

where

with atv =(: ) ' and Ptv= —(:) ' We then ob-
tain Ftv =2 Pr(V; & 0, I ~i ~ N), and so Ftv =2 Pr[V;
& —(Ptv/atv) Vo, I ~ i ~ N]. The variables I'~, . . . ,

Y~ are conditionally independent given that YQ =
& Q.

Hence,

Ptdv =Pr(5; & 0, i =1,2, . . . , N), (3)
QZ

(P(-) = (2tr)

where S; =g, ~ t Tt The N . variables 5; are A'(0,

(d ~')) and E(5;5t) =(d q ), for i ~j. We use the
is the cumulative Gaussian distribution function. Now
—

ptv/atv =[(d —
I )/(N —d)] ' . If we make the change

of variable u = —(P t/va J)vt, we get
+

Ftv =2 J~ [C&(u) exp[ —u /2(d —I )]] exp[du /2(d —1)]du.N —d
(6)

Wh(u0)
e~"'"'g(u)du = '

g(uo)
N 1/2

1/2
2z

—h "(uo)

The integral in (6) can be estimated by use of La-
place or saddle-point methods. " If we let e " =@(u)
xexp[ —u /2(d —I )] and g(u) =exp[du /2(d —I )]
then, as N goes to infinity,

then

kd =d/2(2tr) 't lnd,

cd = I —In In d/(2 In 2 )In d.

If d/N =const =K, then

(i 2)

with un=argmaxh(u). Details of proofs and calcula-
tions will be published. '

The general result is that the expected number of
fi wed points is given by an expression of the form

F~ =kd2"

~here kd and cd are constants depending purely on the
interaction order d and which can be precisely comput-
ed.

It should be noticed that without any loss of generality
we can assume d ~ —,

' N. When d is fixed, we obtain

kd =KN/2(2tr) ' lnN,

cd = I
—In lnN/(2 in 2) lnlV.

(i4)

(I S)

Table I indicates the behavior of F~ for some fixed
values of d.

Higher-order neural networks. —In the case of neural
networks the problem is rather diferent. With the as-
sumption that k vectors M', . . . , M of dimension N
with ~ 1 coordinates have been selected, the purpose is

du0
kd =exp

2d —2

d —
1

du0 +d 1

' 1/2
TABLE I. Indication of the behavior of Fz =kd 2 for

different fixed values of the degree d.

Cd

d —
1

cd =0.5+ logq
uQd

2(d —1)ln2 ' (i 0)

where u0 is the unique solution of the equation

e
" '/(2tr) ' 'e(uo) —uo/(d —I ) =0.

If d scales with N such that d ~ —,
' N and d +~,

1

2

3
4
5

10
50

100
1000

1

1.0505
1.1320
1.2178
1.3031
1.7032
4. 1667
6.6705

39.3100

0
0.2874
0.4265
0.5124
0.5721
0.7215
0.9090
0.9461
0.9916
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N
(N+1)

p, J,
N —

1~k~ g
j——p J

to construct a nontrivial energy function of degree d hav-

ing these vectors among its local minima over the hyper-
cube. The dynamical evolution of the network can then
be interpreted in terms of computations: error correc-
tion, associative memory, and nearest-neighbor search.
Here we are not interested, in the first place, in the total
number of stable states but rather in the maximal possi-
ble value of k, which is often regarded as a measure for
the storage capacity of a network. However, this capaci-
ty depends on the storage rule adopted, on the
configuration and mode of selection of the vectors (or-
thogonal, at random, . . .), and on the quality required on
the retrieval (are small errors acceptable or not?). In a
probabilistic context, the maximal possible rate of
growth of k with N has been used as an indicator of
capacity.

Various storage rules are reviewed by Baldi. ' We
shall here state results for three difrerent cases: arbi-
trary rules, generalized sum of outer products rule, and
generalized spectral rule. Detailed proofs, which are
rather technical, are given in Ref. 12. Complements and
partial results (especially for the quadratic case) can be
found in the work of Venkatesh, McEliece et al. ,

' Ven-
katesh, ' and Venkatesh and Psaltis. '

(i) Arbitrary rules: If k is the largest integer such
that for almost any set of k vectors M ', . . . , M, we can
find a nontrivial form of degree d having M', . . . , M
among its stable points, then

growth of k with N is

d —i

It should be remarked that in spite of differences in

the assumptions, all these theorems point in a same
direction: For neural networks with energy function of
fixed degree d, the maximal number of programmable
stable states is essentially of the order of O(N ').

We have found precise estimates for the number of
stable points of higher-order spin-glasses with infinite-
range generalized Gaussian interactions. While the gen-
eral exponential form of the solution can easily be
guessed, the exact value of the parameters and the rate
at which the number of local minima approaches 2, as
the disorder increases with the order of the interactions,
is nontrivial. We have described how certain models of
neural networks and the corresponding storage rules can
be generalized to include nonquadratic interactions and
have estimated the corresponding capacities under
difTerent sets of assumptions. It may be possible to over-
come some of the limitations of traditional neural net-
works by use of networks of degree d, since all our re-
sults indicate an increased capacity which scales as

The precise eAects of variations of d on the size
of the basins of attraction of the patterns stored and on
the total number of stable states (including those which
are not in the list of initial patterns) requires additional
work. Finally, it should be noticed that computer simu-
lations are in very good agreement with our asymptotic
estimates even for small values of N (N ~ 20).

(2) Generalized sum of outer products rule: This is a
natural extension of the classical Hebbian rule for d =2.
The coefticients TI are constructed as the sum of gen-
eralized outer products,

k

Ti= g (M')'
s=l

If the components of the k vectors are chosen from a se-

quence of symmetric Bernouilli trials [i.e. , Pr(M, '= —I )
=Pr(M,'= I) =0.5], then the largest allowable rate of
growth of k with N such that the k vectors are stable
with probability approaching 1 as N ~ is given by

k =N' ' j2d! lnN

(3) Generalized specrral rule: When d=2, and given
a starting state A: the spectral rule or projection rule
amounts to iteratively projecting A orthogonally onto the
linear space generated by M', . . . , M, and then taking
the closest point on the hypercube to this projection.
This scheme can be extended to higher orders by use of
pseudo inverse matrices. The algebraic construction is
described in Ref. 12. Again the largest allowable rate of
growth of k with N is
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