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"Shattering" Transition in Fragmentation
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For particles undergoing fragmentation with a rate a(y) —y~+', where y is the particle size, a cascad-
ing process occurs when P & 1 in which smaller particles break up at increasingly rapid rates, resulting in

mass being lost to a phase of "zero"-size particles. The cascading of the breakup rate, or "shattering, "
produces a fractal dust, similar to a Cantor dust, with dimension 0 (Df ( l, and is analogous to, but op-
posite from, the process of gelation found in aggregating systems.

PACS numbers: 61.41.+e, 82.70.—y

Particle fragmentation occurs in many important
physical processes, including polymer degradation, '

grinding or crushing, and droplet breakup. Because
of its wide applicability there has been considerable in-
terest in predicting theoretically the evolution of the
particle-size distribution during fragmentation. Explicit
distributions have been found through statistical and
combinatorial arguments ' ', as well as through a
kinetic-equation approach. ' ' In most of this work
solutions have been found for only the case where the
breakup rate is independent of the size of the object and
all fragments are produced with equal probability.

In many physical situations, however, the breakup rate
is not independent of particle size or other properties.
Here we report new solutions to the fragmentation equa-
tion for classes of breakup rates which depend on parti-

cle size. We find that when the breakup rate increases
su%ciently fast as the size of the particles decreases, a
cascading of the breakup occurs such that mass is lost to
zero-size particles. This cascading process is analogous
to the gelation transition which occurs in coagulating
systems. We call this cascade "shattering" to reAect the
rapid production of very small particles. We also find
that the number of particles that are formed during a
breakup event does not inhuence the shattering transi-
tion. These results suggest that in general (not just for
the class of models we considered) the rate of comminu-
tion of small particles, rather than the number of frag-
rnents produced or their size distribution, determines
whether shattering occurs.

The evolution of the particle-size distribution for a
continuous system undergoing fragmentation is described
b 6 16 17

r)c(x, t)/r)t = —a(x)c(x, t)+ Jt a(y)b(x ~y)c(y, t)dy.
X

Here c(x, t) is the concentration of particles of size (or
length) x. The first term on the right-hand side
represents the loss of particles of size x because of their
breaking up into smaller particles, where a(x) is the rate
at which particles of size x break. The second term
represents the increase of particles size x because of the
breakup of larger ones, where b(x

~ y) is the distribution
of products from a particle of size y breaking.

Since b(x ~y) is the rate of production of particles of
size x from those of size y it must be normalized so that
mass is conserved: f xb(x ~y)dx =y. The expected
number of particles is given by N(y) =f b(x ~y)dx.
For the case of binary breakup b(x ~y) is symmetric,
b(x ~y) =b(y —x ~y), and N =2. For N & 2, b(x ~y) is
not symmetric but satisfies the following condition which
expresses the requirement that the breakup process is a
single event with no rearrangement of the mass allowed:

z

xb(x ~y)dx ~ J (y —x)b(x ~y)dx, (2)
0 y

—z

where z &y/2. This inequality states that when a break

occurs such that a particle x ~ y/2 is formed, the mass
contained within the smaller fragments (y —x ) must
contribute to particles whose size is less than or equal to
the total mass of the fragments smaller than (y —x). A
sufficient condition for (2) to be satisfied is that b(x

~ y)
is a monotonically decreasing function of x. If the sys-
tem is limited to binary breakup, then the equality holds
in (2) since one small particle ( &y/2) will be formed
for each larger one ( & y/2).

We consider the case where a(y) =y~+', and where
the distribution of product fragments has the form
b(x ~y) =f(y)x'. The normalization condition implies
f(y) =(v+2)/y'+', v& —2. This b(x ~y) satisfies (2)
for v ~ 0 and is symmetric for v =0 (which is the
binary-breakup case). For v&0, the expected number
of particles produced per breakup event is & 2. For
—

1 & v & 0 it follows that N =(v+2)/(v+ l), indepen-
dent of y. If —2 & v ~ —

1 an infinite number of parti-
cles is expected from each fragmentation event as
N =~, yet mass conservation is still satisfied.
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Substitution of the above expressions for a(x) and b(x ~y) into (1) gives

l)c(x, t)/t)t = xt'—+'c(x, t)+(v+2)„" yt' "x'c(y, t)dy
X

By application of the transformations z =x '+, g(z, t) =c(x, t)/x', (3) is reduced to the equation for binary frag-
mentation:

(3)

c(x, t, P, v) =x'g(x'+'"', t, (2P —v)/(v+2))

with the initial conditions transforming similarly. For a monodisperse initial condition, c(x,0) =6(x —l), the solutions
transform as

c(x, t, P, v, l) =(v+2)/2l x g(x +,t, (2P v)/(v+2), l "+ 1 )

where g(z, t, a, L) is the solution to (4) for g(z, 0) =6'(x —I.). Thus this class of rate kernels for multiple fragmenta-
tion may be transformed into a binary fragmentation model.

For a monodisperse, initial condition (3) may be solved by substitution of the series expansion:

'dg(z, t)/r)t = z'—+'g(z, t)+2„J w'g(w, t)dw, (4)
2

with a=(2P —v)/(v+2). Equation (4) has been studied extensively in the past (although mainly for a=0). ' ' ' If
g(z, t, a) is the solution of (4) then the solution of (3) will be given by

tk
c(x, t) =exp( tlt'+') 6(x——l) + g Bk (s)

Equating like powers of t, and solving recursively for Bk(x), we find

c(x, t) =ex ( —tlt'+') 6(x —l)+ (v+2)lt'
(l —I )!k!

=exp( —tl~+ ') 6(x —1)+ (v+ 2) tl~ 'x'At((P+ v+ 3)/(P+ 1),2, (lP+ ' —x~+ ') t ) (6)

where W(a, b, z) is Kummer's confluent hypergeometric function and (a)k =a(a+1)(a+2) . . (a+k —1). ' The de-
tails of this derivation (for the binary-breakup case) are given elsewhere. By using Kummer s transformation on JR, '

we can rewrite (6) as

c(x, t) =exp( —tl~+')6(x —I)+(v+2)tl~ 'x'exp( —tx~+')JR((P —v —I)/(P+1), 2, (x~+' —l~+')t).

The moments of the distribution are given by

M„=I"exp( —tl~+ ' )W((v+ 2)/(P+ 1),(n+ v+ 1)/(P+ 1),tl~+ ')
=I"JB((n —1)/(P+ 1),(n+ v+ I )/(P+ 1), —tlP+'),

where M, =f x"c(x,t)dx.
For the Kummer's function JR(a, b, z), a =0, —1, —2, —3, . . . the series expansion for the function terminates after

—a terms and (6) becomes an associated Laguerre polynomial, L„' . If we set

(v+2)/(P+ I)—:m = —1, —2, —3, . . . ,

then (6) gives

c(x, t) =exp( —tl~+')[6(x —l) —(P+1)tl "x"L'" )(t(l~+' —x~+'))].

Likewise, terminating solutions for (7) can be found if m =1,2, 3, . . . . Thus we have a range of terminating closed
form solutions in this model, with possible values of P between 1 and —3 and —2 & v ~ 0.

Here we are concerned mainly with solutions where P & —1 since this is where the phase transition occurs. First
consider the case P = —1. Taking P —1, (6), (7), or (9) gives

&/2

c(x, t) =e ' 6(x —l)+ t(v+2)
l ' 'x'I~(2[t(v+2)ln(l/x)] ' ) (10)

ln (l/x )

where I~ is the first-order modified Bessel function and M„=l"exp[(l —n)/(1+n+ v)t]. This exponential increase in
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the total number, Mo, is indicative that P = —
1 is at a transition to singular behavior. The onset of this exponential

growth is independent of v.

For P & —
1 and 1'or all allowed values of v, M~ is time dependent. This time dependence of M~ reflects the loss of

mass to infinitesimally small particles. We refer to these smallest particles as the zero-limit dust. An explicit example
is given by the case m = —2 or P = —v/2 —2, for which (9) or (6) gives

e(x, t) =exp( —tl " ')I6(x l)+—(v+2)l "' 'x'(t ——, t'(l " ' —x " ')]j,
with

—v/2 —
1

M„=l"exp( —tl ' ') 1+
n+ v+1

(v+2) t l
(n+ v+1)(2n+ v)

(i 2)

For n =1 the mass,

M =l ( —tl '' ')(1+tl '' '+ —' t'l ' ') (i 3)

is a monotonically decreasing function of time.
Some discrete binary models corresponding to p & —

1 can also be solved explicitly, and serve to illustrate the na-
ture of shattering. As an example we consider the case of a binary breakup model with ak =2/(k —1) and the distribu-
tion of products given by b;

~
k =1/(k+ 1). This model corresponds to p = —2 and v =0 in the continuous system. The

concentrations ck for a monodisperse initial condition, ck(0) =8k„, are

/(+)
Cn

ek =(n/k)[(n —k+1)e ' "+' —2(n —k)e '"+(n —k —l)e ' " ' ],

e~ =n —
2 n(n(n —1)e ' "+' —2(n —1)(n —2)e '"+(n —2)(n —3)e ' " ' ],

(i 4)

a(x & X)—X (I S)

which implies that Df =P+2 for —2 & P & —
1 and all

v. This distribution is similar to the classic Cantor set
and may be interpreted as a "randomly" constructed

where r is the time for the discrete breakup system. This

may be verified by direct substitution into the discrete
version of the fragmentation equation. To find the con-
tinuum limit we let the size of the rnonomers be c and
take e 0, with n =l/e, k =x/e, r =et, r =et,
ct,. (r) = c(etx). Then (14) becomes Eq. (11) with v=0.
The monomers become a point of measure zero and
disappear from the distribution, while the rest of the dis-
tribution becomes the finite phase with mass & 1. The
apparent loss of mass during shattering is a result of the
continuum limit, and in a system with a lower-size cutoA'

the mass of the dust phase belongs to particles of size c.
The amount of mass in the monomers is precisely the
missing mass l —M~, where M~ is given by (13).

If the particles are interpreted as linear rods (lines)
undergoing a cutting process where no rearrangement of
the products is allowed, then the space distribution of the
dust will be a fractal, reminiscent of a Cantor dust.
This is illustrated in Fig. 1, which shows simulations of
discrete cutting on a line for various values of P ~ 0.
The fractal dimension, Df, of the dust spaced on the line
can be found from the relation A'(x & X) —X as
X 0 where A'(x & X) is the number of uncut frag-
ments of size x greater than A. In the limit x 0, (6)
gives c(x, t) —x t~+ 1 or

dust. Here the "tremas" or "whey" correspond to the
uncut segments with the dust of "curds" as the zero-limit
dust. For P = —

1 we find Df =1 and the distribution is

not yet a fractal, while for P = —2 the power-law behav-
ior does not hold, since JV is logarithmic. When

P & —2, then Df & 0 and the distribution cannot be de-
scribed as a fractal. We also note that, as with the tran-
sition to shattering behavior, v has no eftect on the frac-
tal properties of the zero-limit dust.

This transition between finite-size particles and the
zero-limit dust is remarkably similar to the gelation tran-
sition found in polymerization reactions, although gela-
tion is essentially the opposite process. ' In gelling
systems an infinite-size cluster will form in a finite
amount of time when the homogeneity k of the aggrega-
tion rate kernel, K(x,y), is greater than l. Gelation is

signaled by the larger moments becoming infinite in a
finite amount of time. In shattering, mass is time depen-
dent and smaller moments are undefined or infinite.
Gelation and shattering are both kinetic phase transi-
tions. In gelation the infinite gel cluster is one phase and
the remaining particles are the sol, while in shattering
systems the dust is the condensed phase and the remain-
ing distribution is the other "finite" phase. Solutions for
fragmenting systems show interesting scaling behavior
for the limit x 0, t ~ analogous to the x
t ~ scaling behavior for coagulating systems.
The fragmenting systems also have interesting dynamic
scaling behavior, which we have discussed elsewhere.
We note that the steady-state scaling behavior of sys-
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several beneficial discussions with A. Kerstein. One of
us (R.M. Z. ) acknowledges support from a H. H. Rack-
harn Fellowship from the University of Michigan.

4'ote added. —After acceptance of this paper, we have
become aware that some mathematical aspects of our
model of fragmentation were previously discussed in a
somewhat different context by Filippov.

!) = —1.5

FIG. 1. Results of a continuous time, discrete space cutting
process applied to a line for 11=0,—I, —1.5, —2, plotted as a
function of time. The line is composed of 1024 segments with
cuts shown in black and uncut regions shown as wide. As cut-
ting proceeds, time increases in the vertical, downward direc-
tion. At a given time, the state of the system is found by draw-
ing a horizontal line through the figure; solid black regions of
two or more adjacent cuts represent clusters of rnonomers.
Within each segment of n uncut bonds an individual bond is
cut with a rate equal to n ~. In the continuum limit (e 0)
the monomers become the "zero-limit dust" while the uncut
segments (which are on all length scales) produce a fractal,
power-law distribution of gaps between dust regions, when
P( —1. The case P= —2 corresponds to the analytical solu-
tion (11) in the text, with v=0.

tems undergoing coalescence and breakup h ~s recently
been considered by Family, Meakin, and Deutch.

For this model of multiple fragmentation, the distribu-
tion of particles produced upon breakup, b(x Iy), has no
effect on whether M i is time dependent or constant, and
only P determines the transition to shattering. Based
upon this result, we conjecture that shattering will occur
whenever lim„oxa (x ) =~.
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