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As a system is diluted, the critical temperature 7. may fall to zero at a concentration x. greater than
the percolation concentration p., because mere connectivity does not guarantee the transmission of order
even at T =0. Detailed results, including bounds on x., are presented for the three-state Potts antifer-
romagnet on a triangular lattice and for quadrupolar models of (0-H;),(p-H2)1 -, mixtures on fcc and

triangular lattices.

PACS numbers: 64.60.Ak, 05.40.+j, 05.50.+q, 67.80.Mg

It has been generally believed that when magnets are
quench diluted the onset of long-range order (LRO) at
T =0 occurs at a concentration x. equal to p., the per-
colation threshold, independent of the type of interac-
tion.! Even the short-range Ising = J spin-glass now
seems to conform.? We describe exceptions, however, in
which x. is significantly higher than p. for nonlocal
geometric reasons. Whereas conventional percolation
depends on a single connected path through the lattice,
certain systems require multiple neighbors or multiple
paths through the lattice. Single paths may transmit
partial order, and a particular site may be ordered by the
receipt of partial order from two or more widely separat-
ed paths. Because of this nonlocal contribution to order-
ing, x, cannot be computed directly by use of ordinary
percolation algorithms.

We exemplify systems with x.> p, by the nearest-
neighbor three-state Potts antiferromagnet on a triangu-
lar lattice® (3-PAFT), and by models of hydrogen mole-
cules on fcc and triangular lattices. The work was
motivated by the experimental observation® that x, is ap-
proximately equal to p-H,-diluted o-H; and o-D,-diluted
p-Ds, with x. (=0.53) much larger than p. (0.195 for
fcc®). The similarity of x. values in H, and D, suggests
that quantum effects (which are much smaller in D;) are
not responsible for the discrepancy between x. and p.,
but rather that their common geometry is crucial.

Order transmission is trivial in dilute ferromagnets
(F) and in dilute isotropic antiferromagnets (AF) with
two possible spin states (Ising). These always have
X, =p., because each occupied site requires only one or-
dered neighbor to tell it which state to choose—the same
for F, the opposite for AF. A second occupied neighbor
is required if the site is to transmit its order to another;
otherwise, it can play no role in global ordering. For or-
der to be passed across a sample we require an infinite
cluster of sites with two occupied neighbors, which
occurs by definition at p.. Thus x, =p,.

The site-diluted 3-PAFT appears to be the simplest
nontrivial system having 1> x,>p.. The model is
defined by the Hamiltonian

H =JY €¢;6(0i,0;), (1
Gj)

where J is a positive constant, g; is 1 with probability p
and O otherwise (quenched), o; is a three-valued dynam-
ical variable (e.g., o; € {4,B,C}), and the sum is over
nearest-neighbor pairs. There are six degenerate ground
states in the pure system (p=1), as illustrated at the top
of Figs. 1(a)-1(f). Among antiferromagnetic g-state
Potts models the g =3 case is actually very special®; for
g = 3 (bipartite lattices) the ground-state entropy is
nonzero, and for ¢g=2 (bipartite) the ground states are
frustrated. In the 3-PAFT alone we can concentrate on
the transmission questions, since the ordering in the un-
diluted system is relatively simple. For the bond-diluted
3-PAFT Ono’ has suggested that x. > p. from the extra-
polation of finite-T results. We consider the sire-diluted
case, which is more amenable to analysis and closer to
experiment, and demonstrate without extrapolation that
X. > p even at T7=0.28

We discuss the transmission of order at 7=0 in the
3-PAFT, from top to bottom in Figs. 1(a)-1(f). The
upper part is presumed ordered in one of the six ground
states as shown, whereas the lower part is ordered only in
1(a) and 1(f). In the other cases the star and inverted
triangle symbols represent partial order with two choices
(such as 4 or B) and no order (4 or B or C), respective-
ly. In Fig. 1(a) every site has at least two different
neighbors in the row above, and is thus uniquely deter-
mined; order is passed from row 1 to row 10. In Fig.
1(b), while the sites of rows 1-4 are determined, the site
in row 5 is only constrained not to be in state B, those in
rows 6 and 7 are entirely undetermined, and those in 9
and 10 could be in any of the six ground states. There is
no transmission of LRO.

For order to be transmitted across a site-diluted 3-
PAFT there must be at least an infinite cluster of sites
which have three occupied neighbors, two to tell them
which state to choose and a third to which to pass the in-
formation. This defines the m =3 bootstrap percolation®
critical concentration, p3;=0.628 +0.008,' which is
considerably above p. =0.5.° For x < p3 there can be no
LRO at T=0, and so we have x, = p3 > p..

A slight improvement to this lower bound for x. can
be made by consideration of Fig. 1(c). Here LRO can-
not be transmitted even though each site has three occu-
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FIG. 1. Illustration of the propagation of order in a diluted three-state Potts antiferromagnet on a triangular lattice at 7=0. The
three possible Potts states are 4, B, C. Unoccupied sites are not shown. Sites that have two possibilities, (e.g., 4 or B) are shown as
inverted triangles. Sites that are completely undetermined relative to the top row (but not necessarily relative to their neighbors)
are shown as stars. Adjacent occupied sites are joined by solid lines for ease of reading.

pied neighbors. The rightmost site in row 4 has a choice
of two states because the two neighbors give it the same
information. Each site requires more than information
from two occupied neighbors—it requires that they be
on different sublattices. Thus a necessary condition for
the passage of LRO is the presence of an infinite cluster
of sites that have three neighbors, at least one on each of
the other two sublattices. For the 3-PAFT this is
equivalent to the requirement that two of the neighbors
be neighbors of each other. We have estimated the criti-
cal concentration pj3 for this condition from simulations
of up to 500 lattices with 30 % 30 sites, periodic boundary
conditions, and finite-size scaling. We find p3=0.635
%+ 0.01, slightly higher than pj.

The configurations of Figs. 1(d) and 1(e) are very in-
teresting. While LRO fails to be transmitted to either
case we see that partial order is transmitted because the
lower half of 1(d) is restricted to two of the six ground
states and that of 1(e) to a choice of four. Certain com-
binations of such links can transmit LRO, as in Fig. 1(f),
because each transmits partial information. All three
links are needed in 1(f), but other cases in which two are
enough can be constructed. The determination of the
passage or not of LRO in the 3-PAFT clearly requires a
knowledge of the long-range connective geometry of the
system. The precise determination of x. cannot there-
fore employ the usual fast Hoshen-Kopelman percolation
algorithm,!! even with the preselection of sites used to

compute p3 and p3.

We have demonstrated that x.> p. in the 3-PAFT.
We now exclude the possibility that x, =1 by providing
an upper bound on x.. An upper bound is easily ob-
tained via a local algorithm by our looking for the per-
colation of occupied triangles (on the dual lattice). We
call a triangle of three occupied mutual neighbors con-
nected to another if they share a common edge. Con-
nected triangles clearly transmit order, as in Fig. 1(a),
but are not necessary for LRO, as seen in Fig. 1(f). The
triangle percolation condition is actually equivalent to
explicitly discounting the failing bridges of Figs. 1(d)
and 1(e) from the p3 condition. We obtain a critical
concentration for triangle percolation of p,=0.782
+0.004 from simulations of up to 30 % 30 sites. Togeth-
er we have bounds 0.635 +0.01 < x. < 0.782 £ 0.004.

We now consider the quenched site dilution of nearest-
neighbor quadrupoles in a Pas ground state'? on the fcc
lattice. This is appropriate for molecular-hydrogen mix-
tures of quadrupolar o-H, diluted by inert p-Hj, or
quadrupolar p-D, diluted by inert o-D,. We consider
only the breakdown of the ordered Pas phase on the fcc
lattice, not the phase (possibly glassy) that replaces it for
x <x.. Two isolated quadrupoles have lowest energy
when mutually perpendicular, but on the fcc lattice they
are forced by a form of frustration into the compromise
four-sublattice Paj structure. For the present purpose
we will represent the diluted system by a four-state mod-
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el, in which each quadrupole is specified fully by an axis
direction n lying along one of the four (111) directions,
with Hamiltonian

7‘[=Z S[EjV(ﬂ,‘,llj,l',‘j). (2)
(i)

Here r;; is the vector joining nearest neighbors i and j
(e.g., r;;=[1101), and the interaction energy V is given
by the full electric quadrupole-quadrupole interaction'?
between ground-state molecules. The pair interaction
V(n;,n;,r;;) is minimized when n;#n; and (n; r;)
x(n;-r;;) =0. Nonminimal configurations need not be
considered within the four-state model because no frus-
tration remains— all pair interactions can be simultane-
ously minimized. In isolation, six of the twelve neighbors
of a given fixed quadrupole have three alternative states,
and six have only two. This four-state model explicitly
ignores the canting away from the (111) directions that
occurs on dilution,'? as discussed below.

In the four-state model, it is clear that ordinary per-
colation is insufficient to produce LRO since a single
chain of occupied sites [cf. Fig. 1(b)] can certainly not
propagate order. In order for a quadrupole to know
which of the four orientations to choose it must have at
least two neighbors on different sublattices. To pass or-
der, a third site is needed and thus ps3 again provides a
lower bound for x.. An upper bound on x. is provided
by the m =7 bootstrap percolation concentration p; be-
cause, as is easily shown, a quadrupole surrounded by
any seven ordered neighbors is always uniquely ordered.
Recent simulations for the fcc lattice!* provide pj
=0.30£0.02 and p;=0.81*+0.02, giving overall 0.30
=< x, =0.81 for the four-state model, compared to p,.
=0.195.5 These bounds are based on fast local algo-
rithms; sharper estimates for x. could be obtained by a
simulation incorporating nonlocality.

The real hydrogen system differs from the four-state
model in that hydrogen molecules in diluted surround-
ings will not in general adopt one of our four states.!?
Indeed, the four (111) directions in the Pas structure
only occur as a compromise in the presence of frustra-
tion, which is relieved by dilution.'> The resulting cant-
ing of the quadrupoles may reduce but cannot increase
the transmission of order, so that in all we have

xc(hydrogen) = x.(four-state model) = p3> p,.. (3)

Our bound for hydrogen is thus x.= p.=0.30, con-
sistent with the experimental result* x, = 0.53 for both
H, and D,. The value of x, can also be estimated by
other nongeometrical methods, taking a 7— 0 limit; for
the fcc lattice'® the Bethe-Peierls approximation sug-
gests x. = + and a Kirkwood restricted-trace approach
gave x.=0.5. Such estimates do not, however, have
controlled errors.

Our result clearly shows the importance of geometry
in the orientational ordering of hydrogen. Although our
results are obtained for 77=0, we expect that geometry
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will be important for 7> 0 too. The experimental x.(7)
approaches a well-defined limit as 7— 0, with dT/dx,
— oo, Partial ordering may also occur for 1 > x > x, in
hydrogen, and probably accounts for the observation in
NMR experiments!”!8 of an orientational LRO parame-
ter approaching less than its maximal value as 7— 0.

We can apply similar reasoning to o-H;-p-H; mix-
tures on a two-dimensional triangular lattice, appropri-
ate to adsorption on graphite.'?® A four-state
“pinwheel” ground state forms in the pure system. How-
ever, a four-state model corresponding to Eq. (2) is not
strictly applicable because of the inequivalence of the
four orientations; in some cases the electric quadrupole-
quadrupole interaction could allow a single neighbor to
order a quadrupole correctly given the four-state restric-
tion. A more detailed analysis allowing for canting?'
suggests that at least two neighbors are needed to order a
molecule in the unrestricted case, and so, allowing again
for the onward transmission of order, we expect that
X¢= p3=0.628 on the triangular lattice.'® This is con-
sistent with the experimental results,?® which extrapolate
tox.=0.7x0.1 as T— 0.

Shnidman and Mukamel'® have considered another
mechanism for x. > p, in diluted frustrated systems. Di-
lution tends to relieve frustration and reduces order be-
cause some sites reorient in the absence of certain neigh-
bors. This effect may give a strict inequality x.(hydro-
gen) > x.(four-state model); cf. Eq. (3). Our mecha-
nism can occur in both frustrated and unfrustrated sys-
tems, but only if there are more than two possible states
at each site (i.e., not Ising). Both mechanisms rely fun-
damentally on the existence in the pure system of multi-
ple (but not necessarily conflicting) ordering information
arriving at a site through the different bonds. In the di-
luted system the lack of some such information at a
given site can lead to (a) lack of order, (b) partial order,
(c) incorrect order, or (d) canting. We have emphasized
(a) and (b), whereas Shnidman and Mukamel consider
(c). Case (d) may be considered a special case of (c)
where the local orientation falls outside the normal man-
ifold found in the ground state. Cases (c) and (d) only
occur in frustrated systems, but, as we have shown,
X¢ > pe can occur in cases (a) and (b) too, and is thus
not a special feature of frustration.

The approach considered here is widely applicable.
The demonstration that geometry rather than quantum
effects is responsible for some experimentally observed
x> p. cases suggests a further look at other dilute sys-
tems with complex ground states, such as metamagnets
and plastic crystals. Partially ordered clusters, and
perhaps a partially ordered phase, may well occur in oth-
er diluted multistate systems, including short-range Potts
spin-glasses.?? The surprising result that the passage or
not of LRO depends on the overall cluster geometry even
with nearest-neighbor interactions suggests a connection
with rigidity percolation.??
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