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Fluctuating Hydrodynamics in a Dilute Gas
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Hydrodynamic fluctuations in a dilute gas subjected to a constant heat flux are studied by both a com-
puter simulation and the Landau-Lifshitz formalism. The latter explicitly incorporates the boundary
conditions of the finite system, thus permitting quantitative comparison with the former. Good agree-
ment is demonstrated.
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Fluctuating hydrodynamics is a stochastic formulation
of standard fluid mechanics. ' Spontaneous fluctuations
of hydrodynamic variables are introduced into the trans-
port equations by the addition of random components to
the pressure and heat fluxes. Since these fluxes are not
conserved quantities, the correlations between the ran-
dom components are expected to be short ranged and
short lived so that at hydrodynamic scales they are as-
sumed to be Dirac-delta correlated. Their strengths are
then chosen to yield the correct equilibrium thermo-
dynamic fluctuations as derived from the Gibbs distribu-
tion. Nowadays there are various ways to derive the
Landau-Lifshitz fluctuating hydrodynamics and there is
general agreement about its validity, at least in near-
equilibrium situations.

Extension of the theory to nonequilibrium systems
leads to predictions of the asymmetry of the Brillouin
lines in a liquid subjected to a constant heat flux. Ki-
netic theory provides further support for these predic-
tions. Although these theoretical results are in agree-
ment with light-scattering experiments, ' the impor-
tance of the nonlinearities" and the influence of the
boundaries' remain under discussion (see also the work
of Tremblay' ). In any case, the question arises as to
the applicability of the fluctuating-hydrodynamics for-
malism to systems under strong nonequilibrium con-
straints. One way to address these questions is through
particle simulations.

In this article we study a dilute hard-sphere gas
bounded by two parallel plates located at y =0 and y =L,
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using both the fluctuating-hydrodynamics formalism and
a Boltzmann Monte Carlo particle simulation. The
plates act as infinite reservoirs so that by fixing their
temperatures one can impose the desired temperature
gradient across the system. As can be checked easily
from the macroscopic hydrodynamic equations, the heat
flux in the stationary state is constant and the velocity is

zero [note that there is no instability because we do not
include external fields (gravity) in our formulation' ].
To study the fluctuations, we first linearize the fluctuat-
ing-hydrodynamics equations around the macroscopic
stationary state. Since we are mainly interested in the
influence of nonequilibrium constraints and since the
particle simulations with which we compare our results
employ periodic boundary conditions in the x and
directions, we shall limit ourselves to reduced quantities,
defined as

l fL„ fL,
6W (y)—:— dx ' d= 6A (x y .)g~p ~p

where 2 is any dynamical variable and X=I I, is the
wall cross section (note that the reduced variables are in

fact the zero- wave-vector values of the "parallel"
Fourier components of the dynamical variables). It is

easy to check that the reduced equations for the x and z
components of the velocity fluctuations decouple from
the rest and are not influenced by the constraint. A/'e

will therefore concentrate our attention on the remaining
equations for the reduced mass density 6p, the y com-
ponent of velocity 6'i, and the temperature 6T, which
turn out to be
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where the subscript 0 indicates local macroscopic quantities, R the Boltzmann constant divided by the mass, gp the
shear viscosity, Kp the thermal conductivity, and Pp the pressure. syy and gy are the random components of the pressure
and heat fluxes, respectively, with the following covariances':

(s~ ~ (y, t )s~ ~ (y ', t ') ) = —', k a Tp ( rip/S) 8(y —y ') 6(t —t '), (Sa)

(gJ (y, t )g& (y ', t ') ) = 2 k a Tp (Kp/S )6(y —
y ') 6(t —t ''), (sz z (y, t )g~ (y ', t ') ) =0.
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In writing Eqs. (2)-(4) we have made use of the closure
relations for a dilute gas, P(p, T) =RpT and

e(p, T) =3pRT/2 where e is the internal energy density.
If the force between the particles is purely repulsive and
obeys a power law, then the transport coefficients are
only functions of temperature as '

go = g, To and
K'p = K'e Tp, so that in Eq. (4) we can set 6/r = a/cp8T/Tp
For a hard-sphere gas, the exponent a is —,

' and, from
Chapman-Enskog theory, rr, /ri, =15R/4.

There remains the problem of specifying the boundary
conditions for Eqs. (2)-(4). If we assume that the state
of the walls is statistically independent with respect to
the system, then the boundary conditions for BT are

6T(y =O, r) =bT(y =L„r) =O.

The boundary conditions for Bv follow from the conser-
vation of the total particle number; the continuity equa-
tion yields

pp(y) ~t (y) I boundaries

This completes our specification of the boundary condi-
tions.

It may seem strange that we do not have to specify
any boundary conditions for 6'p. From a physical point
of view, this comes from the fact that the state of the
wall can only constrain the temperature and velocity of
the gas at the wall, whereas the behavior of the density
close to the wall is entirely determined by the internal
dynamics of the system. From the mathematical point of
view, it can be shown that for any given initial condition
Sp(y, O), Su(y, O), BT(y, O), the boundary conditions for
Bu and 6T are sufticient to specify completely the solu-
tion of the system. '

Because the coefticients and the noise are both space
dependent and because we are dealing with a finite sys-
tem, it is no longer possible to use elementary transform
methods to solve the above fluctuating-hydrodynamics
equations (for large enough systems, an expansion in the
wave number of the gradient can still be used ' ). An
alternative approach would be a direct computer simula-
tion of the Langevin equations (2)-(4). This is a useful
method in the study of fluctuating-hydrodynamics equa-
tions in two or three dimensions. ' Here, instead, we
construct the evolution equations for the correlation
functions and numerically solve these equations by relax-
ation. ' The first step in this approach is the evaluation
of the static correlation functions, which can then be
used to compute the dynamical correlation functions as
an initial value problem. In this short Letter we deal
only the static correlation functions.

To proceed further, we appeal to a very useful identity
of the theory of stochastic processes; namely, given
that

dc;/dt =f;(ci, . . . , c„)+F;(r), i =1,2, . . . , n, (8a)

where the f s are arbitrary analytic functions of c s, and

F;(r)'s are multi-Gaussian white-noise processes with co-
variances

&F;(r)F, (r')) =g;,6(r —r'),

then

(8c)
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FIG. 1. Comparison of the temperature-temperature spatial
correlation functions obtained from the fluctuating-hydro-
dynamics formalism (solid curve) and Boltzmann Monte Carlo
particle simulation. Note that the local equilibrium delta-
function contribution has been removed.

For finite n, this identity is easily proved by writing the
Fokker-Planck equation corresponding to (Sa) and from
it deriving the second-moment equations. A comparison
with the second-moment equations derived directly from
(8a) then leads to the relation (8c). These relations
remain valid for n ~ although, from a strictly
mathematical point of view, some special care is needed
in the continuum case. Using the reiation (Sc), one can
derive the evolution equations for the equal-time correla-
tion functions. If one discretizes the spatial derivatives,
the steady-state solution may then be obtained by relaxa-
tion methods.

The primary purpose of this work is to compare the
predictions of the fluctuating-hydrodynamics theory with

particle-simulation results (the nonequilibrium efi'ects we

are considering are too subtle to be readily studied by
laboratory experiments). Molecular-dynamics simula-
tions prove to be too slow and have, thus far, yielded only
qualitative results. ' We rely, instead, on results ob-
tained by a Boltzmann Monte Carlo simulation original-
ly developed for rarefied gas studies by Bird (some lim-

itations of this method are discussed by Meiburg ). We
have considered a system containing 20000 particles be-
tween two thermal plates 50 mean free paths (X) apart
and held at difterent temperatures. Here we report the
results for a temperature gradient of 0.04 per mean free
path. Distances and velocities are scaled by k and the
most probable speed, (2kBT/m) ', respectively; the
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FIG. 2. Comparison of the density-velocity spatial correla-
tion functions obtained from the fluctuating-hydrodynamics
formalism (solid curve) and Boltzmann Monte Carlo particle
sim u1 ation.

FIG. 3. Comparison of the density-density spatial correla-
tion functions obtained from the fluctuating-hydrodynamics
formalism (solid curve) and Boltzmann Monte Carlo particle
simulation. Note that the local equilibrium delta-function con-
tribution has been removed.

mass is set equal to 1 and ka to 2 (see the work of Gar-
cia " for details). The statistical error is estimated to be
about 10% for the temperature autocorrelation function
(Fig. 1) and less than 5% for the other correlation func-
tions (Figs. 2 and 3). The local equilibrium contribu-
tions to the correlation functions are removed and, as a
result, larger errors are to be expected at the central
peak. We note that there are no free parameters in the
analysis; the solution of the correlation-function equa-
tions is entirely specified once the simulation parameters
are given. These are, in the reduced units, T(y=0) =1,
T(y=L) =3, and g, =5m' p,q/16, where p, q is N/Z
Because of a small slip in the temperature profile,
T(y =L) is set equal to 2.95 in the hydrodynamic equa-
tions (2)-(4).

The program was run in parallel on two FPS264 array
processors attached to the 1CAP2 system at IBM
Kingston for 2 x 10 collisions per article. Figure 1

shows the temperature-temperature static correlation
function which is clearly long ranged. Despite some sta-
tistical scatter, the simulation results show quite good
agreement with the fluctuating-hydrodynamics results.
The nonequilibrium contribution to the global tempera-
ture fluctuation (defined as the space average of the stat-
ic temperature autocorrelation function) is found to be
proportional to the square of the temperature gradient.
Further studies with difterent system sizes indicate that
for fixed temperature gradient it increases with the
length of the system. These observations are in agree-
ment with previous work on model systems. In Figs. 2
and 3, we depict the density-velocity and density-density
static correlation functions, respectively. Because of the
conservation of the total mass, the static density auto-
correlation function is strictly negative; its space integral
compensates exactly for the local equilibrium contribu-
tion. Both curves show much better agreement with the
fluctuating-hydrodynamics predictions. Similar agree-

ment is found for all the static correlation functions in-

vestigated. For completeness, we are also studying the
dynamic correlation functions and are experimenting
with molecular-dynamics simulations for dense systems
using more realistic interaction potentials.

Our present observations suggest that the fluctuating-
hydrodynamics equations are valid at length scales of a
few mean free paths even in the presence of strong non-
equilibrium constraints, at least for a dilute gas (see also
Alder and Wainwright ). Had the data shown other-
wise then a strictly microscopic formulation in kinetic
theory would have been the only recourse. We consider
this a fortunate development which will encourage future
work in this direction. For instance, recent large-scale
molecular-dynamics results demonstrate the feasibility of
the observation of macroscopic hydrodynamic phenome-
na such as vortex formation and shedding past an obsta-
cle23 27, 28 in particle simulations. The next major step, of
course, will be the study of fluctuations near hydro-
dynamic instabilities by computer simulations. Our re-
sults indicate that fluctuating hydrodynamics provides a
promising way to tackle this problem, at least before
and, probably, close to the instability. '
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