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Optical Bistability by Surface Resonance Modes
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When a resonance mode is excited in a two-dimensional array of dielectric spheres, the local field in-
tensity is enhanced inside the spheres. This resonance frequency decreases with the increase of the
dielectric constant. By use of these two properties, a new mechanism is proposed to realize optical bista-

bility at a low laser power.

PACS numbers: 42.65.—k, 68.90.+g, 78.20.—¢

Observation of the optical bistability in semiconduc-
tors' has made the optical computing system a realistic
object, and various architectures have been proposed.?
Optical bistability comes from the nonlinear response of
the material and is determined by the magnitude of the
third-order susceptibility. Therefore, research has been
focused on materials with large nonlinearity and short
switching time.3 In this Letter, a new mechanism is pro-
posed to reduce the laser power for the optical bistabili-
ty.

We consider a two-dimensional array of dielectric
spheres placed on a flat metal substrate. Our model cor-
responds not only to colloidal particles* placed on a met-
al surface but also to microspheres fabricated on a flat
surface.”> As the electromagnetic (EM) waves suffer
multiple scatterings among spheres, the array of spheres
show characteristic features of a dielectric slab with
periodic modulation.® Therefore, it can also be seen as a
model for a crossed grating’ of dielectric materials coat-
ed on a metal surface. In a dielectric slab with dielectric
constant larger than 1, there exist localized EM modes.
Their dispersion relations lie outside the light cone and
hence do not couple with incident waves. When the
translational symmetry parallel to the surface is violated
by a periodic modulation, however, the localized modes
couple with the external field through umklapp process-
es. Thus, they can be excited by incident waves. We call
these coupled modes resonance modes. Our calculation
consists of two parts. The first part shows that, when ex-
cited, the resonance modes enhance the local field inten-
sity inside the spheres by 2 orders of magnitude. The
resonance frequency decreases (increases) with the in-
crease (decrease) of the dielectric constant. In the
second part we point out that, if these properties of the
resonance modes are used, an optical bistability is realiz-
able at a low laser power.

Maxwell’s equations for the EM field of frequency w
give the integral equation for the electric field,

E() =E'0)+Y [Gr.r) u(@)E@ >, (1)
where the tensor Green’s function is defined by

G(r,r’);_,=[6,~‘j+(c/co)zV,-Vj]G(r,r'), (2)

E%(r) is the incident plane-wave field and G (r,r’) is the
usual Green’s function. The potential v;(r) =[1 —¢;(w)]
x (w/c)? takes on finite values inside the spheres (i=1)
and the substrate (i =2). This expression shows that a
material with a larger dielectric constant is equivalent to
a more attractive potential, and explains the dielectric-
constant dependence of the resonance frequency. Equa-
tion (1) is solved exactly for the following model. In the
x-y plane, the spheres of radius a are arrayed in a square
lattice structure with lattice constant d. The distance
from the center of the sphere to the substrate is Z,.
Then the electric field above the sphere is given by?

E(r) =E%xp(iq ~-r)+R(qQ)E%exp(iq*-r)
+Y F(G)expliqd-r), (3)
where ¢
F(G) =(c/20d*ys)(£(qd) + R(qs)E(qg )11+ 1)a,

a=Va()=0G"'-r—-r) a©)+a(1)].

The superscript + or — of the wave vector q means that
its z component is positive (yq) or negative (— yq), and
q6 (=q* +G) is the wave vector shifted by the recipro-
cal lattice vector G. R(q) is a reflectivity tensor of the
substrate for an incident field of wave vector q . The
matrices 7, I, and T describe the scattering by the
sphere, a structure factor for the scattering between
spheres, and a multiple scattering between a sphere and
the substrate, respectively. The electric field inside the
sphere is expanded by a vector spherical wave with
coefficient a(i), and a(0)=¢*(q )E®° and a(1)
=£*(q*)R(Q)E® are the coefficients for the incident
and reflected waves, respectively. The factor v relates
the amplitude of the external field with that of the inter-
nal field. All these quantities are characterized by angu-
lar momentum /, magnetic quantum number m, and
B(=M,N) which indicates the magnetic and electric
components.

The result of the numerical calculation is given in Fig.
1 as a function of frequency which is scaled as Z =d/A
with A the incident wavelength. The parameters are
chosen as a =0.2 ym, d =0.5 um, Zo=d/2, ¢, =3, and
the experimental data by Johnson and Christy® are used
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FIG. 1. Frequency dependence of the enhancement factor of
the electric-field intensity averaged inside the sphere and the
absorption spectrum for a two-dimensional array of dielectric
spheres placed on a silver substrate.

for the dielectric constants of the silver substrate. The
incidence angle is 20° and the incident wave vector lies
in the x-z plane. Solid curves are for p polarization and
the dotted curves are for s polarization. In the upper
half, we show the electric field intensity averaged inside
the sphere, I, scaled by the incident intensity /o. The ab-
sorption spectrum of the EM energy for a silver sub-
strate is given in the lower half, which is calculated by
integration of the z component of the Poynting’s vector
over the x-y plane. For the present parameters, Z=1
corresponds to hw =2.48 eV, which is smaller than the
surface plasmon energy [g;(w) = —1] of silver and the
flat surface shows an almost complete reflection.

There are two resonance modes in our system, one lo-
calized in the dielectric array and the other localized in
the metal substrate, i.e., a surface plasmon polariton
(SPP). When the resonance modes are excited, evanes-
cent waves from the arrayed spheres excite the SPP
modes. The coupling is strong for p polarization as
shown clearly in the absorption spectrum. Though
modified by the interaction with SPP, the characteristic
features of the resonance modes are the same as those of
the dielectric array in vacuum, i.e., when excited, the
internal intensity is enhanced by 2 orders of magnitude
and the resonance frequency decreases when the dielec-
tric constant is increased.

Next, let us introduce a nonlinearity into the dielectric
constant of the spheres as

g () =, (0)+4rnx’1, 4)

where the third-order susceptibility is chosen to be
23=10"75 esu. If we fix the frequency at slightly below
the resonance, the optical bistability will be realized by
the following mechanism. First, consider the intensity
enhancement factor I/ as a function of the dielectric
constant. On an increase of the dielectric constant, the
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FIG. 2. Specular reflectivity (bold lines) and the real part of
the nonlinear dielectric constant (thin lines) as functions of the

incident power. Bistability is indicated by the arrows. x>
=105 esu.

resonance frequency decreases and the enhancement fac-
tor at the fixed frequency first increases, attains its peak
value of the order of 102, and then starts to decrease.
On the other hand, the dielectric constant is a function
of the internal intensity I and increases linearly with it.
Thus, in a certain region of Iy, these two curves have
three crossing points. This indicates the optical bistabili-
ty. When the real part of x> is negative, bistability is
realizable for a frequency slightly above the resonance.
The average intensity of the local field is a complicated
function of the dielectric constant, and the self-consistent
solution is calculated by iteration, i.e., the average inten-
sity obtained by use of the linear dielectric constant
£,(0) is used to calculate the first iterated value of the
dielectric constant. By use of this value, I calculate the
average intensity, which is used for the second iteration
of the dielectric constant. This process is repeated until
self-consistency is attained. Then, reflectivity is calculat-
ed from Eq. (3) for the converged &, (1). The calculation
is performed for various values of the incident intensity.
In a certain region of /o, two stable solutions are ob-
tained. Figure 2 shows the diagram thus obtained for
the optical bistability. The third p-polarized resonance
mode is used, and the laser frequency is fixed at
Z =0.87. Thin curves show the nonlinear dielectric con-
stant versus incident power and the bold curves show the
specular reflectivity. The bistability is realized at a low
laser power, more than 2 orders of magnitude smaller
than that required by a Fabry-Perot resonator of the cor-
responding material parameters. This reduction of the
laser power comes from the sensitive dependence of the
resonance frequency on the nonlinear dielectric constant
and the large enhancement of the local field. The effect
of the imaginary part of the dielectric constant is exam-
ined by putting Imeg; =0.01 and 0.02, respectively. In
the former case, the bistability is realized at a low exci-
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tation level. If we shift to a slightly smaller frequency Z,
the bistability will be realized also in the latter case.
Thus we can conclude that the use of the resonance
modes of a thin dielectric layer is promising for the reali-
zation of the optical bistability at low laser intensities.

In this calculation, I assumed a plane-wave incident
field. The effect of the limited cross section of the light
beam was investigated by Kaplan and co-workers'® for
the reflection from nonlinear interfaces. In our case, this
effect seems to be of considerable significance because a
sharp resonance mode is used for the enhancement.

To realize optical bistability, Wysin, Simon, and
Deck!! proposed the use of an enhanced local field by the
excitation of SPP in the Kretschmann configuration.
The mechanism proposed in this Letter is quite different
and is based on the enhancement by the excitation of the
resonance mode of the nonlinear material itself together
with the shift of the resonance frequency which is deter-
mined by the local field intensity. Therefore one can use
the following features of the resonance modes. First, the
resonance-mode frequencies are scaled approximately by
the inverse of the lattice constant. Second, for a larger
radius of the spheres, the density of resonance modes in-
creases in the energy spectrum. Last, the resonance fre-
quency depends on the incidence angle. Therefore, by
controlling the lattice constant and sphere radius, and by
changing the incidence angle, one is able to choose a
convenient resonance mode. This point is useful for the
experimental observation.
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