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Fluctuations and Clustering in Heavy-Ion Collisions
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We propose a new theory to treat fluctuation phenomena in heavy-ion reactions. In practical terms,
the method is an extension of the theories of the one-body density based on mean-field plus collisional
dynamics. In an exploratory study of the Ne+ Ne reaction, we find considerable fragmentation with
a rapidly falling mass spectrum.
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There has been a large amount of theoretical work re-
cently devoted to the study of the fragmentation of high-
ly excited nuclei. The models discussed employ a broad
variety of physical assumptions. They involve such con-
cepts as thermodynamic phase transitions, ' statistical
equilibrium, percolation, molecular dynamics, and
more complicated hybrid models that use mean-field dy-
namics. By itself mean-field theory lacks enough fluc-
tuation to produce realistic fragmentation. Up to now,
the important fluctuations were introduced by ad hoc as-
sumptions. In the work of Knoll and Strack the initial
compressional phase of the reaction was assumed to pro-
duce a local equilibrium, and only the expansion phase
was simulated by time-dependent Hartree-Fock (TDHF)
theory. In another class of hybrid model, the Boltz-
mann-Uehling-Uhlenbeck (BUU) theory was used for
the initial stage of the reaction. At some point in the
time evolution, the single-particle density matrix is re-
placed by particle wave packets.

Here we shall present the beginnings of a theory that
includes the important quantum eflects and also has
sufhcient fluctuations to show qualitatively realistic frag-
mentation. Theories of nuclear dynamics are founded on
various approximations to the wave function or propaga-
tor of the system. The TDHF theory follows when the
wave function is approximated by a single Slater deter-
minant. The extended TDHF theory, which is the
quantum parent of the classical BUU theory, evolves the
single-particle density, including the mixing of many
Slater determinants perturbatively. However, the poten-
tial field is calculated from the single-particle density,
and so does not have any additional fluctuations. As in
the extended TDHF theory, we assume that the mixing
of Slater determinants can be calculated perturbatively.
We also assume that any coherence between the deter-
minants can be ignored. The neglect of coherence is a
crucial assumption which allows the evolution of the sys-
tern to be calculated stochastically on a Markov chain,
jumping from one configuration to another. Thus only

one determinant need be considered at a time, and the
mean field will be correct for that state. The major am-
biguity with this approach is the choice of single-particle
basis for the determinants. The basis aAects the evolu-
tion of the system if the coherence between determinants
is neglected. Obviously, the basis should be chosen to
minimize the error in this fundamental approximation.
Couplings between configurations are minimized by our
choosing orbitals that localize the particles as much as
possible in coordinate space. Of course, the perturbative
scheme for the mixing of determinants requires that the
orbitals be chosen in a way to allow energy-conserving
jumps from one determinant to another.

We are still far from realizing this theory at a
quantum-mechanical level, but the essential ideas can be
applied to a practical semiclassical model of the evolu-
tion of the system. Slater determinants are propagated
by use of the Vlasov equation and the test particle
method. The jumping of the Slater determinants is
treated by the Boltzmann collision integral, except that
the collisions are treated as branching points in the evo-
lution of the phase-space density. This is the fundamen-
tal difterence from the conventional BUU approach in
which the collision term is treated as a continuous source
term. That method is presently implemented by repre-
sentation of the single-particle distribution function by
collections of test particles or by sums of Gaussian func-
tions. ' In the method of Ref. 9, the test particles are
grouped into parallel simulations, and the mean field is
calculated from an ensemble average. In the limit of a
large number of simulations, fluctuations due to nucle-
on-nucleon collisions are completely averaged out.

It is assumed in the conventional BUU approach that
the ensemble average is a good approximation to the
quantum-mechanical expectation value of a measure-
ment,

(a& =g.aP, .
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This approach has been successful in the explanation of
one-body observables such as proton spectra and collec-
tive How efIects. The BUU ensemble average cannot
converge to (a), however, if channels become important
which are beyond the scope of a one-body density
description. The BUU theory fails to describe the for-
mation of composite fragments because particle-particle
correlations are important for the relevant observables.

To describe the Slater determinants we represent their
single-particle Wigner distribution functions by test par-
ticles. We have

JV =n(A, +At, )

test particles all together, where A& and A~ are the
masses of the target and projectile, and n is the number
of test particles per nucleon. In the calculation below,
n =200 was used. The phase-space distribution function
f(r, p, t =0) is then approximated by division of the oc-
cupied phase space into small cells 0;, of equal volume.
In each cell we place randomly N; test particles. The N;
are determined by

N; =X 'Jt„ f(r, p, O)d rd p, (2)

where the normalization constant X is

k=N 'Jr f(r, p, O)d rd p. (3)

f(r, p, 0) = e(pF [p(r )/pn] 't' —p), (4)

where p(r ) is the ground-state density distribution of the
nucleus. The distributions are then boosted correspond-
ing to the desired beam energy.

Similar to the BUU approach, the basic equation
governing the time evolution of the system is

N is given by Eq. (1). V is the total occupied phase-
space volume.

Given an initial phase-space distribution function
f(r, p, 0), Eq. (2) provides a prescription for the distribu-
tion of N test particles to approximate f In pr. inciple
one could start from a shell-model determinantal wave
function and perform a Wigner transformation to get
f(r, p, 0). However, to be consistent with our classical
propagation of the density, we choose to start from the
distribution obtained from the Thomas-Fermi Ansatz in
the rest frames of target and projectile,

4 3 3 do.
rl, f~+v V f~ —V, U Vt f& =

3 J d p2d p3d& v~2
(2tr) ' dA,

&&8(p +p2 —
p

—p4)[fLf2(I —f3)(1 f4) —f3f—(I f )(I —f2—)l, (5)

with f~ =f(rj, pj, l), v&2 the relative velocity between test particles I and 2, and der/dA the (energy-dependent!)
nucleon-nucleon cross section. For the mean-field potential we chose a density-dependent Skyrme parametrization,

U(p(r)) = —(124 MeV)p(r)/po+ (70 MeV) [p(r)/pa] .

This potential reproduces nuclear-matter saturation
properties and is known as the stiA equation of state.
The coordinate-space density p(r, t) is obtained from the
phase-space distribution f(r, p, t) via

p(r, t ) =J"f(r, p, t ) d'p. (7)

In BUU theory the right-hand side of Eq. (5) is treat-
ed as a continuous source term, since all test particles in
every group are allowed to undergo collisions. This re-
sults in a gradual change in the overall momentum dis-
tribution of the system. We now wish to model the
discontinuous change of Slater determinants coming
from two-particle transitions. We therefore suppress the
collisions of test particles by a factor 1/n. If two test
particles successfully collide, the momenta are changed
not only of these two but also of 2(n —1) contiguous
particles in phase space. This corresponds to collisions of
two physical particles. The shape of the phase-space
volume should maximize the spatial localization of the
particles, consistent with overall energy conservation.

Our actual procedure for moving test particles is as
follows. Suppose in a collision two test particles at coor-
dinates (r~, p~) and (r2, p2) scatter with a momentum

transfer

~p P 1 PI (Pr P2).

The phase-space volume is defined as a sphere of radius
R] about r~ and of radius P] about p~. The two radii are
chosen so that the number of test particles contained in
the volume is n. We have to specify one more condition
to determine the relative magnitudes of R] and P~.
Since R& and P] are limited by the radius R~ of the nu-
cleus and the Fermi momentum pF, we chose R~/P~
=RJv/pF. Now all n test particles within the (R~,P~)
sphere are given the same momentum change hp. In the
same way we find radii R2 and P2 for the second particle
and change the momentum of n test particles in its vicin-
ity by —hp. This method ensures total momentum con-
servation. It approximately preserves the total phase-
space volume occupied, namely f=0 or 1 in the final
state. This is required for the condition f =f, the semi-
classical equivalent to the quantum condition on a Slater
determinant that p =p.

Between collision times t~ and t~+ ~ the evolution of the

864



VOLUME 58, NUMBER 9 PHYSICAL REVIEW LETTERS 2 MARCH 1987

Z
t=Q fm/c t= IQ fm/c t = 30 fm/c

Y

X
Y

X
Y

X

t = 4Q fm/c t = 50 fm/c t = 6Q fm/c t = 7Q fm/c

Y~ x
Y

X

FIG. I. Time evolution of a central zoNe+ 20Ne collision at a beam energy of 100 MeV/nucleon. Displayed is the density surface
p(x, y, z) =0.02 fm 3. Lines of constant x, constant y, and constant z are plotted on this surface.

system is governed by the solution of the Vlasov equation

B,f+v V,f V, U V~f =—0, t, ( t ( ti+t.

This leads to equations of motion for the test particles,

dr dpp = —V,U(p(r)), t, (t(t, +i,E t

which are solved by use of standard low-order Runge-
Kutta techniques.

In Fig. 1 we have plotted the time evolution of a sys-
tem of two Ne nuclei evolving according to our model.
We have chosen a beam energy of 100 MeV/nucleon in a
head-on collision. At time intervals of (10 fm)/c we

display in a quasi three-dimensional graph the surface
for which the nuclear density p(x, y, z) exceeds a value
of 0.02 fm . Lines of constant x, constant y, and con-
stant z are plotted on the surface. The total volume of
the coordinate space, 20 & 20 x 30 fm, is indicated by the
lengths of the coordinate axes.

At t =0 fm/c both nuclei have spherical shapes and
their surfaces are 2 fm apart. At t =(10 fm)/c the initial
penetration is visible. Collisions start to occur at roughly
this time. By t = (20 fm)/c, the system has reached
maximum overlap in coordinate space, and most of the
nucleon-nucleon collisions are over by t =(30 fm)/c. In
the example shown, eighteen collisions occur, thirteen of
them by t =(30 fm)/c. At later times the system ex-
pands to lower densities. This is shown by the fact that
the surface p(x, y, z) =0.02 fm takes up a larger
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FIG. 2. Mass-yield curve for the Ne+ Ne reaction at
100 MeV/nucleon. A sample of 100 central events was used.

volume in coordinate space. The fluctuations induced by
the nucleon-nucleon collisions begin to show up in the ir-
regular shape of the density distribution. At t =(60
fm)/c the density fluctuations are so large that the sys-
tem breaks up into several fragments which are then
moving away from each other.

We have calculated a mass-yield distribution using our
model, for the 100-MeV/nucleon Ne reaction. This is

accomplished with the following algorithm. We use the
final-state distribution to determine the density in a cu-
bic array of coordinate-space cells, and mark the cells in

which the density exceeds a value p,„t. We then deter-
mine which of these cells are connected, with a cluster
search similar to the one used in percolation models.
Summation of the density of all cells in a cluster yields
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the cluster mass.
In order for this method to have some physical

significance the outcome of the cluster search should not
be strongly dependent on p,„t, provided that it is chosen
reasonably. As reasonable values for p,„t we consider the
interval po/10 & p„t & pp/4. We have used different
values of p,„, in this interval and found only negligible
dependence of the fragment yields on its value.

In Fig. 2 v e have displayed the mass yield resulting
from a simulation of 100 central events for the above re-
action. The mass yield is decreasing rapidly as a func-
tion of fragment mass. The dependence is about 2
in a power-law fit. However, at the present exploratory
stage of our calculations, we do not feel we can quantita-
tively compare our results with experiment.

We have presented a model which is obviously superi-
or to the BUU theory, since it does not utilize an
ensemble-averaged mean field and contains fluctuations
based on a definite quantum approximation scheme. It is
of interest now to see whether these fluctuations are ade-
quate to describe the data, or whether less restrictive as-
sumptions must be used in making a dynamic theory.
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