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Nonperturbative Length Scale in High-Temperature QCD

E. Manousakis and J. Polonyi '
Center for Theoretical Physics, Laboratory for Nuclear Science, Department of Physics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 8 December 1986)

The string tension of spacelike Wilson loops is computed in SU(3) lattice gauge theory in the high-
temperature deconfined phase. Its physical value is extracted following the continuum limit. An upper
bound for the length scale where nonperturbative fluctuations become dominant is computed. The value
of the string tension and the nonperturbative length scale are very close to their zero-temperature coun-
terparts.

PACS numbers: 12.38.6c, 11.15.Ha

The investigations of strong interactions at high tem-
perature were initiated by the observation that the
effective coupling constant g tt(T) becomes small at high
temperature. In fact, the temperature T plays a similar
role to the momentum scale in the standard manipula-
tions with the renormalization-group equations. It was
hoped that QCD becomes a weak-coupling theory at
high enough temperature and we shall have better
chances to identify the elementary constituents of the
strong interactions. It was encouraging too when analyt-
ical' and numerical evidence was found for the ex-
istence of the deconfined phase at high temperature. It
was soon realized that the infrared modes (p 0) spoil
the weak-coupling expansion even at arbitrarily high
temperature. The real expansion parameter in sum-

ming up finite-temperature Feynman graphs is g T/m
where m is the mass gap in the chromomagnetic propa-
gator, which is at most m =c 'g T. Thus one finds an
expansion parameter c whose actual value is inaccessible
in the weak-coupling expansion.

There were attempts to estimate a mass scale related
to the magnetic field by means of numerical simula-
tions. But in order to make statements about the high-
temperature weak-coupling expansion we need control
over finite-size eAects and the verification of the proper
continuum behavior on the lattice. In addition, one has
to be careful in referring to (lattice) weak-coupling
graphs when g tr(T) & g tr(T/No) =gt,«,.„—1 (No is
the lattice size in the timelike direction). Furthermore,
it is not obvious how the mass scale associated with the
Z„magnetic fluxes is related to m . The latter controls
the infrared behavior of small fluctuations of the mag-
netic field.

Special care is needed when interpreting the numerical
results for the internal-energy density at high tempera-
ture. The not uncommon view that we have evidence
for a gas of weakly interacting gluons at high tempera-
ture is not necessarily correct because of finite-size
eAects occurring in the calculations done so far. All that

one can say is that the results are compatible with having
eight light, weakly interacting quasiparticles in quarkless
QCD. We believe that this conclusion survives the ther-
modynamic limit and that the quasiparticles are plane
waves of gluons locally (asymptotic freedom) and be-
come distorted beyond a certain length scale. The aim
of this Letter is to estimate this length scale which sig-
nals the onset of nonperturbative eftects. Such a calcula-
tion can be done numerically without our making as-
sumptions about the details of the dynamics of the quasi-
particles. The discussion of this dynamics and how these
distorted gluon waves form a weakly interacting gas re-
quires a nonperturbative framework ' and is beyond the
scope of the present work.

First it is worthwhile to refer to an exact result of
high-temperature lattice gauge theory. For a finite value
of the lattice spacing and suSciently high temperature
the spacelike Wilson loops follow area behavior. The
proof is a formal elaboration on the point that high tern-
perature corresponds to strong coupling in spacelike
directions. In fact, when we control the temperature by
introducing an anisotropic lattice, (=a,/a, &1, in order
to separate dependences on time and spacelike extents of
the system, the lattice action becomes

6
sp-sp 4 Z sp-t

g CI

where &,p p and ~,p, denote contributions to the action
from spacelike and timelike plaquettes, respectively. At
high temperature g «1 and the spacelike links behave as
in a strong-coupling model, i.e. , the leading contribution
to the spacelike Wilson loop is obtained by tiling up the
area of the loop with spacelike plaquettes. Unfortunate-
ly such simple considerations can tell us nothing about
the cutoA dependence of the spacelike string tension and
thus about continuum QCD.

A more systematic way to describe nonperturbative
features of thermal Green's functions of the continuum
theory is to consider the eAective theory of the gluon

1987 The American Physical Society 847



VOLUME 58, NUMBER 9 PHYSICAL REVIEW LETTERS 2 MARCH 1987

fields at a fixed time slice t =to,

exp I
—S,tr[A„(x) ]] =

g D [A„(x,t ) ]exp I S—[A„(x,t ) ]]Q 6(A„(x,t p) —A„(x)).
I

In fact, the spacelike Wilson loops are given in terms of
Ap(x, tp) only and are thus governed by S,tr[A„(x)]. It
is known that S,tr[A„(x)] describes a three-dimensional
Yang-Mills-Higgs system with Ap(x) as the matter field
in the adjoint representation. In addition at sufficiently
high temperature, where the static modes dominate the
path integral, 5,~ is of the form

S,a. = —(1/4g T)Fv F,&

—D;ApD;Ap —V(Ap),

i,j =1,2, 3.

F;~ is the antisymmetric tensor of the spatial field com-
ponents. The coupling constants of the manifestly
gauge-invariant local potential V(Ap) are functions of
g T. It is known that the three-dimensional Yang-Mills
theory is confining. ' Moreover, all the nonperturbative
dynamics of high-temperature QCD come from this
eA ective theory.

A Monte Carlo calculation was carried out to deter-
mine the actual value of the string tension o, of spatial
Wilson loops and to study its continuum limit. We ob-
tained an upper bound for the length scale where nonper-
turbative eA'ects dominate thermal Green's functions as a
by-product of the calculation in the following way: Con-
sider V (b, c) = —In [W(b, c)], where W(b, c) is the ex-
pectation value of a spacelike Wilson loop with sizes b
and c. The ln[W(b, c)] selects the connected parts of the
correlation function. It involves the contributions of
modes with length scale g & b or c. In order to select the
contributions of modes with g —b we form Z(b, c)
=BV(b, c)/r)b Confinemen. t of the three-dimensional
theory guarantees that the nonperturbative tail
Z(b, c) =cr, c, as b tends to infinity. We define the length
scale gp, that at which Z(gp, c) =2cr, c. It is clear that
for b ) gp the nonperturbative contributions dominate in

Z. This discussion is similar to the one in the case of the
force acting between static charges. In that case, one
considers timelike Wilson loops and takes the derivative
with respect to the spatial separation in order to obtain
the force. It is obvious that the force is the relevant
quantity to look into as opposed to the potential. This
way of defining (p is rather arbitrary, but the important
point is to use the same definition when we compare zero
and finite temperature.

In the numerical part, the spacelike Wilson loop
W(b, c) was replaced by the correlation function of the
Polyakov lines wrapping around the periodic lattice in

spatial direction. We define

W„(b,L ) = (tr n„(0)tr n t(bej ) ),

Nu

n„(n, „)= Q U„(n,„„,n„),

L =aN„, p =0, 1,2, 3, j =1,2, 3, p&j.

The difterence between the Wilson loops and W„~ is ob-
vious when the z direction is interpreted as the Euclidean
time. In that case 8' includes the contribution of the
color singlet and octet states of the static quark-
antiquark system. The Wilson loop corresponds to the
singlet case only. Consequently W~ and the Wilson loop
agree when both follow area behavior and I & b.

We may define a static "potential" from the spacelike
correlation function as V, ' (b) = —[InWy(b, L)]/L
+const. The V, computed on a 10 x 6 lattice at
P=—6/g2=6 is shown in Fig. 1 (squares). The physical
static potential V, ' (b) = —[ln Wpj (b, c)]/c+ const,
measured (by timelike Wilson loops) on confined (zero
temperature) lattice at the same value of P, taken from
D'Hoker, ' is plotted as well (dashed line). The con-
stants in the previous expressions are chosen such that

2 [V, (2a)+ V, (4a)] =
2 [V, (2a)+ V, (4a)] =0. The

physical static potential at finite temperature can be ob-
tained from the correlation function of the timelike Po-
lyakov lines as measured on our 10 &6 lattice. This po-
tential, V, ' (b) = —[lnWpj(b, P)]/P+const, is also
plotted in Fig. 1 (dash-dotted line). Since at T=0,
W~ =Wo~, the obvious lesson of this calculation is that
the correlation function of the spacelike components of
the gauge field at the present T—2Td„ is very close to
its zero-temperature confined counterpart. The act of
deconfinement appearing in the behavior of the timelike

04

V, =V, at T=O

() 4

3
Separation (a6)

FIG. 1. The correlation function of spacelike Polyakov lines
V, (b) computed on 10 X6 and 6 X3 lattices are shown by
squares and circles, respectively. The solid line is obtained by a
fit with a function of the form V(b) =a/b+o;b+const. The
dashed line is the V, at T=O, taken from Bowler et aI. (Ref.
11). The dash-dotted curve is the VI computed at 10 x6 and
6 X3 at T & Td„. Everything is expressed in units of the lat-
tice spacing a6 of the 10 x6 lattice.
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I.IG. 2. The correlation function of timelike Polyakov lines
V, (b) computed on 10'X6 at p =6 and 6'x 3 lattices at various

p values. The matching condition is satisfied at p=5.5615 for
the 6 x 3 lattice.

component of the gauge field does not influence the spa-
tial components in a substantial way. '

The lattice spacing a was left unchanged in the previ-
ous discussion. In order to make contact with the contin-
uum theory one has to follow the limit a 0. This pro-
gram has been carried out quite exhaustively for the
physical zero-temperature static potential and the result
is consistent with having finite string tension in the con-
tinuum limit. ' The results of Fig. 1 and the standard
flux-tube picture of the linearly rising part of the static
potential suggest that the slope of the function V, (b) is

insensitive to the dynamics of the shorter timelike direc-
tion. Thus it seems likely that the slope of V, (b)
remains finite in the continuum limit.

To verify this conjecture, V, (b) was calculated on two
lattices with lattice spacings a and a' with a'=2a, in the
following way: The ratio of the lattice spacings a'/a =2
is achieved on lattices N, XN, and (2N, ) X2N, by the
tuning of g (a ') and g (a), so that the finite part of the
correlation functions V,

' (na') and V, ' (2na) com-(~, )' (2w, )

puted at the corresponding g agree. It is advantageous
to use V, (b) to find the values of the coupling constant

g (a) and g (a') which correspond to the same tempera-
ture, ' because it has strong temperature dependence.

Because of limitation of computer power we had to
choose lattices of the size 10 x 6 and 6 x 3 in the present
calculation. The subtracted potential

V, ' (b) = —[lnWo~(b, P) —21n(trio(0))]/P

is plotted in Fig. 2. The best matching between the two
lattices 103X6 and 63X3 was found at 6/g equal to 6
and 5.5615, respectively. So hp which realizes the halv-

ing of the lattice spacing is 0.44 for p=6. dp has been
calculated with the use of much larger lattices and was

found around 0.3 ' or 0.35."' This discrepancy is re-
lated to finite-size eA'ects. In fact, the spatial size of the
two lattices was almost the same in our case. So our hP
corresponds to the theory placed in a finite quantization
box with size L —1 fm which tends to increase hp. The
spatial correlation function V, (b) is plotted in Fig. 1

(circles). The constant term was determined on the
smaller lattice by requiring —,

' [V, (a)+ V, (2a)] =0.
The stability of the potential V, (b), as far as this change
a 2a is concerned, is supported by this result.

The static potential can be approximated by the func-
tion V(b) = —a/b+rrb+c. In the case of the correla-
tion function of spacelike Polyakov lines we find

a =0.184+ 0.02 Vcr =0.22 ~ 0.03. The corresponding
zero-temperature values are a =x/12 and Vcr =0 22.
~ 0.02."

The numerical results presented above support the pic-
ture that spacelike Wilson loops follow area behavior
even in the high-temperature deconfined phase. More-
over it was found that at the temperature considered,
T—2Td„, the value of the string tension of the spacelike
Wilson loop is very close to those of the zero-tem-
perature theory. Considering the path integral "s the
partition function of a four-dimensional classical system,
one can say that the compactification of one (time)
direction does not influence the asymptotic behavior of
the correlation function of the gauge-field components of
the other (spacelike) directions. We find this behavior
surprising, since the system undergoes a phase transition
at T=Td„which changes the dynamics of the time com-
ponent of the gauge field completely.

The physical string tension at finite temperature be-
comes zero at T = Td„. ' It remains to be seen how the
spacelike string tension behaves in the vicinity of Td„.
Spacelike Wilson loops are controlled by the three-
dimensional Yang-Mills-Higgs system of the static
modes at sufficiently high temperature and by the com-
plete four-dimensional theory at low T. There is no obvi-
ous reason to believe that the spacelike string theory
would be even approximately the same for T C Td„and
T & Td„. Thus the temperature dependence of the
spacelike string tension is a proper test of our under-
standing of the confinement mechanism. As an example
one may consider the suggestion that chromomagnetic
monopoles are present in QCD. This scenario involves
the condensate at T & Td„and the gas of localized
monopoles for T & Td„. Although no self-consistent
analytical approximation is known to sum up the contri-
butions of such objects in the path integral, it seems
plausible that the spacelike string tension originates ulti-
mately from the condensate by dual Meissner eAect' at
low temperature' and from the fluctuations around lo-
calized monopoles ' at high temperature. The monopole
density becomes zero at the transition temperature and
increases as a singular function of T —Td„. If correct,
this description should explain why the spacelike string
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tension depends weakly on the monopole density and
happens to be similar in both cases.

The actual form of V, (b) allows us to give an upper
bound for the length scale gp characterizing the appear-
ance of nonperturbative contributions in thermostatic
correlation functions. We find gp —2.0a —0.20 fm at
T—2Td„as opposed to gp —2.3a-0.23 fm at T=0.
Although the string tension appears to be almost the
same, the short-distance behavior divers at the two
values of the temperature studied. The coeScient of the
1/b term in V, (b) is consistent with the value obtained
from the two transverse fluctuations of the flux tube at
T=O, a =tr/12. At T—2T4„ this coefficient becomes
smaller and lies between the values corresponding to two
or one transverse mode, tr/24 & a & tr/12. In general, a
should approach tr/24 as the temperature increases.
Since the correlation function V, is less steep at short
distances for high temperature, gp(2Td„) & gp(0). But
gp(T) is an upper estimate for the nonperturbative
length scale only. The applicability of the perturbation
expansion must be even more restricted in the vicinity of
the critical temperature. gp defined by V, (b) diverges in

this region since the physical string tension vanishes at
T=Td„The upper b. ound gp, based on the generation
of a linear term in static potentials, is clearly inadequate
in this case. One needs an insight into the dynamics at
T —Td„ to select another nonperturbatively generated
term for our purpose. What one can say at the present
stage is that it does not help to increase the temperature
if we intend to eliminate the nonperturbative aspects of
the strong interactions. Any description of the dynamics
of high-temperature QCD, which involves length scales
larger than 0.2 fm, must rely substantially on nonpertur-
bative eflects.
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