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The problem of two magnetic moments in a Fermi gas is studied with the numerical renormalization
group used by Wilson for the Kondo problem. Even when the interaction energy of the moments is
much smaller than the Kondo energy, the asymptotic low-temperature behavior is that of a correlated
Kondo effect. An effective Hamiltonian for the low-temperature properties, which are nonuniversal, is

deduced.
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The problem of a magnetic impurity in a metal—the
Kondo problem—is now well understood. ! Some con-
jectures have been made for the two-magnetic-impur-
ities problem. A solution to this problem is important
for an understanding of heavy fermions as well. The
most popular conjecture is that if the Kondo temperature
Tk is larger than the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction K between the magnetic moments,
the impurity spin is quenched and the many-body prob-
lem is that of two isolated magnetic impurities. On the
other hand, Abrahams and Varma® have recently
discovered that the RKKY interaction itself acquires
logarithmic divergences in higher-order perturbation
theory. The calculation of Abrahams and Varma shows
that impurity interactions cannot be ignored but, as in
the case of the one-impurity problem, diagrammatic per-
turbation analysis does not provide a good picture of the
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physics at low temperatures. We have therefore resorted
to an extension of Wilson’s numerical renormalization-
group method! for the Kondo problem to the two-
impurity problem.

Wilson’s method generates a sequence of effective
Hamiltonians which accurately describe the low-lying
many-body states at successively lower temperatures. By
examining the flow of these Hamiltonians and by com-
paring their symmetry with that for special cases, we
conclude that the effective RKKY interaction strongly
affects the asymptotic low-temperature behavior and
that the isolated impurity behavior is not obtained even
for Ko< Tk. We also generate an effective Hamiltonian
for the low-lying eigenstates near the strong-coupling
(T— 0) fixed point and derive the Fermi-liquid parame-
ters for the model.

The model Hamiltonian is a straightforward extension
of that of Wilson to the two-impurity case:
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where ay are conduction-electron operators. As in Wilson g(k) =k, for —1 <k < 1. a(r;) is the projection of ay on
the site i =1,2 where two-spin + magnetic moments S; and S, reside. For generality, a direct interaction K¢S;*S; is
allowed. Such a term is also generated (RKKY) by the first part of (3) to second order in J.

Symmetry about the midplane of the two moments is used to construct even- and odd-parity states ay, and ay, from

ay in terms of which

Hin=J02,(S;+8S) [g. (k) g, (kDafeoar+ g, k) g, (k) ad,oag,]
KK

where g, (k) =cosk- R, g, (k) =isink-R.

+(S;—S2) lg. (k) g, (kDay,0ak. + He ]+ K¢S, Sy, (4)

This model is difficult to do calculations with because it has k-dependent coupling constants. In the Kondo problem
the k dependence of the coupling constant is known to be irrelevant; we expect the same in the present problem. We
take the value of g, , at k =kF to get (after integration over angles)

Hi =Y, (S1+82) Ueateoare +Joai,0a1,) +S1 —S2) (i mafeoar, +H.c.) + K§S;- S, (5)

Here
Im = )'"2 Joo=010/2)(1 +sinkgR/kgR).

The RKKY interaction generated to second order is
Hrxky =81n2)p(J, —J,)*S;-S2=KS;* S, (7

which is always ferromagnetic. Antiferromagnetic cou-
plings can be studied by adjustment of K¢ or alternately
by the use of general values for J,,/J., Jm/J, with K{ set
to zero.

Wilson’s momentum-shell renormalization together
with his choice of basis states on the two-channel Hamil-
tonian gives the recursion relation for the Hamiltonian
Hpy at the Nth iteration:

Hy+1=AV2HN+ Y (Flpfn+ip +fZN+I)prp)s

p=e,o
(8)

where A is the step size for logarithmic discretization,
and fn. and fn, are basis operators obtained from ay,
and ay, by transformations used by Wilson.!

In our calculations, we have kept up to about 1200
states at each iteration and used A =2.5 and 3. For the
single-impurity problem about 1200 states and A =2
yielded Wilson an accuracy in the large iteration eigen-
values of ~107% In our two-channel problem the
asymptotic accuracy achieved for the coupling constants
we use is better than 10 ™3, .

There are three quantum numbers specifying the
many-body eigenstates. We have adopted the notation
(Q,2S,P), for the states, the first number standing for
total charge above or below charge neutrality, the second
number standing for twice the total spin, and the third
for the parity—O for even and 1 for odd. The subscript
labels in sequence of increasing energy the states with
the same quantum numbers. To arrive at some qualita-
tive conclusions, we display in Fig. | the flow of the ener-
gy of the lowest bunch of states which are asymptotically
degenerate in the strong-coupling limit for various initial
parameters. It should be remembered that an iteration
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N corresponds roughly to a temperature A ~~/2 (ir units
of the bandwidth).

(a) J.=J, (noninteracting impurities).—From Eq.
(7) or in the first iterations of the renormalization pro-
cedure, no RKKY coupling between the two moments is
introduced for J./J,=1. This is true at any iteration.
Figure 1(a) shows the flow of the eigenvalues at odd
iterations. We have also separately performed a calcula-
tion for a single magnetic impurity. All the eigenvalues
shown in Fig. 1(a) are obtained from a combination of
appropriate pairs of the single-impurity eigenvalues.

There are two kinds of symmetries in the noninteract-
ing impurity Hamiltonian, which are reflected in the de-
generacies in Fig. 1(a). First, there is the parity symme-
try, reflected for instance in the degeneracy of the 110,
and the 111, states. Second, there is the simultaneous
rotation of spin triplet to spin singlet with a flip of parity.
This is reflected, for instance in the degeneracy of the
000, and 021, states.

(b) S=1 two-channel problem.— This is calculated
by our keeping only the triplet state of S;+S, in Hy.
The second term in Hy is then effectively zero since it
has matrix elements only between the singlet and triplet
states of S;+S,. The problem then corresponds to a
spin-1 impurity interacting with two conduction-electron
channels with coupling constants J, and J,, respectively.
Let J, > J,. A two-stage Kondo effect is expected® with
an intermediate unstable spin-% fixed point character-
ized by a Kondo temperature Tk(J,) and a low-tem-
perature spin-0O fixed point characterized by a lower
Kondo temperature Tg(J,). Figure 1(b) shows the
Hamiltonian flows for this case. Both the symmetries
mentioned for the noninteracting impurity case are ab-
sent. The ground state is 021, and the 000, state is de-
generate with the 000, state. Such degeneracies are
characteristic of the spin-1 Kondo effect. The intermedi-
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FIG. 1. The eigenvalue flows for Hy [Eq. (8) in the text] for
the two-impurity problem for odd iterations. Only the lowest
bunch of states which becomes asymptotically degenerate is
shown. Tk is defined as (2pJ)"?dexp(—1/2pJ). (a) Nonin-
teracting impurities; (b) impurities locked in a triplet state at
the outset; and (c) impurities interacting ferromagnetically for
Ko= Tx/3. Inset: Energies for large iterations on an expand-
ed scale.

ate unstable-fixed-point Hamiltonian of a spin-%+ im-
purity is also seen in the calculations. If we use K¢> Tk
in the general problem, we find that the states lock to the
S =1 problem at 7= K¢> Tk and subsequently a two-
stage Kondo effect as for the S =1 problem follows.?>

(¢c) Kondo energy larger than RKKY energy.
— Finally, we discuss the case J,#J, and such that
Tx > Ko, which is of great interest for the heavy fermion
solids. Figure 1(c) shows the results of odd iteration for
parameters such that Tx = 3K,. We have checked up to
Tx= 10K to make sure that the results shown are
representative of T > K.

The large-N (iteration number) eigenvalues (i.e., the
large-N fixed-point Hamiltonian) for odd iterations for
finite values of J, and J, are the same as the small-/V ei-
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FIG. 2. The values of the coefficients in the asymptotic
effective Hamiltonian normalized to the density of states for
various values of the initial coupling constants.

genvalues for even iterations (not shown) and vice versa.
This means that the even- and odd-parity states both ac-
quire a phase shift of #/2 near the fixed point. Following
Wilson’s reasoning, this means that the fixed-point Ham-
iltonian corresponds to strong coupling with both J, and
Jo— .

Throughout the flows shown in Fig. 1(c) parity degen-
eracy stays lifted; for instance, 110, and 111, are nonde-
generate. Similarly the lack of the triplet-odd-parity
and singlet-even-parity degeneracy at the zeroth itera-
tion continues except asymptotically near the fixed point.
The symmetries of the effective Hamiltonians at any
finite temperature are thus shown to be unlike those of
the noninteracting problem, Fig. 1(a).

On the other hand, the faster than linear rise in Fig.
1(c) of the state 000, corresponds to KS;*S; being a
relevant operator about the weak-coupling fixed point.*
The degeneracy pattern subsequently of all states be-
comes close to that of Fig. 1(b) qualitatively displaying a
ferromagnetic correlation between the magnetic mo-
ments while undergoing a Kondo effect.

These conclusions can be expressed quantitatively by
our deducing an effective Hamiltonian to fit the eigenval-
ues close to the strong-coupling limit. There are in gen-
eral seven irrelevant operators describing the deviation
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from the strong-coupling fixed point for the two-impurity problem (compared to two for the one-impurity problem). In
terms of these such an effective Hamiltonian is

HIZ=Zp,atp(fgpaflpﬂ+c'c')+Zp Up(ﬂ()p —1 )2+U€0{(n0€ —1 )(HOa —1 )+Za(f(;ea_fge_af()o—afooa'*‘c.c.)}
+Jeofgeof08'f(§oo-f00w (9)

where a=1,]| and nop 1s 0, 1, and 2. The coefficients in H ), are extracted from the fits to the asymptotic spectra such
as shown in Fig. 1(c). For noninteracting impurities [case (a) abovel, one must have U, =U, =U,, = — J,, and te=t,.

The relationship between the parameters is quite different for case (c). In Fig. 2 the numerically determined U,,U,
and |J. | normalized to the one-spin density of states p are shown for various values of Jo and K. Within our numeri-
cal accuracy, we find that they are all given by

{(1.7£0.3)pJo} "V2(pD) ~exp((2pJ0) ~HI +a;[pK o/ (pJ) 21} ) = (pT ) ~ 1 FarloKo/elo)l} (10)

where D is the bandwidth and a; are constants whose value is different for the three terms. For Joe>J,,
ay,=(0.09 £0.01)/81n2, ay,=(0.27 +0.02)/81n2, and a,,=(0.17 £0.02)/81n2. The ratio = 1:3:2 between these
quantities is noteworthy. We find U,, decreasing towards 0 as a function of K¢/Tk; it must be O for the S =1 problem.
A linear relationship between ¢, and U,, and ¢, and U, is expected based on Nozieres’s? “weak-universality” argument.
Our numerical results give ¢, , = — (1 =0.3)U,,. Note that for K¢ ferromagnetic the resonance width decreases from
the Kondo value.

Equation (9) can be reexpressed in terms of sites 1 and 2. One then finds that the Hamiltonian displays ferromag-
netic interactions among quasiparticle interactions at sites 1 and 2 for ferromagnetic K. Our preliminary calculations
for antiferromagnetic Ko lead to an increased resonance width and antiferromagnetic interactions between such quasi-
particles.

Following Nozieres and Blandin,? we may construct a phase-shift expansion from Eq. (9):

691”(5) = é_ rta.e+ (¢e0 + 'l/eo)énof + ((beo - Wio)anol + (¢ee - 3V’ee)6nel, (11)
and similar expression for &, &,1, etc. Here ap is relat- |
ed to 1y, Pee =3Wee 10 U,y oo 10 Uey, and weo to Jop. advice on the numerical work. One of us (B.A.J.) wishes
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We have shown that the Hamiltonian (9) is necessary

to describe the low-temperature behavior to two magnet- @
ic impurities for Ko< Tk. This has important implica- la Present address.
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