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The problem of two magnetic moments in a Fermi gas is studied with the numerical renormalization
group used by Wilson for the Kondo problem. Even when the interaction energy of the moments is
much smaller than the Kondo energy, the asymptotic low-temperature behavior is that of a correlated
Kondo efIect. An eftective Hamiltonian for the low-temperature properties, which are nonuniversal, is
deduced.
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The problem of a magnetic impurity in a metal —the
Kondo problem —is now well understood. ' Some con-
jectures have been made for the two-magnetic-impur-
ities problem. A solution to this problem is important
for an understanding of heavy fermions as well. The
most popular conjecture is that if the Kondo temperature
TK is larger than the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction Ko between the magnetic moments,
the impurity spin is quenched and the many-body prob-
lem is that of two isolated magnetic impurities. On the
other hand, Abrahams and Varma have recently
discovered that the RKKY interaction itself acquires
logarithmic divergences in higher-order perturbation
theory. The calculation of Abrahams and Varma shows
that impurity interactions cannot be ignored but, as in
the case of the one-impurity problem, diagrammatic per-
turbation analysis does not provide a good picture of the

H =HK+H;„t,

physics at low temperatures. We have therefore resorted
to an extension of Wilson's numerical renormalization-
group method ' for the Kondo problem to the two-

impurity problem.
Wilson's method generates a sequence of effective

Hamiltonians which accurately describe the low-lying
many-body states at successively lower temperatures. By
examining the flow of these Hamiltonians and by com-
paring their symmetry with that for special cases, we
conclude that the effective RKKY interaction strongly
affects the asymptotic low-temperature behavior and
that the isolated impurity behavior is not obtained even
for Kp&& TK. We also generate an effective Hamiltonian
for the low-lying eigenstates near the strong-coupling
(T 0) fixed point and derive the Fermi-liquid parame-
ters for the model.

The model Hamiltonian is a straightforward extension
of that of Wilson to the two-impurity case:

HK =QG(k)ak~k~,
k, o.

Hint Jo~a (rt )~a (r~ ) St +a (r2)aa(r2) Sql+KOS) S2,

(2)

(3)
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where a~ are conduction-electron operators. As in Wilson e(k) =k, for —
1 (k ( l. a(r, ) is the projection of ai, on

the site i =1,2 where two-spin —,
' magnetic moments S~ and S2 reside. For generality, a direct interaction @OS~ S2 is

allowed. Such a term is also generated (RKKY) by the first part of (3) to second order in J.
Symmetry about the midplane of the two moments is used to construct even- and odd-parity states a~, and a~ from

ag in terms of which

H;„i =Jog(S~+S2) [g, (k)g, (k')ait, o'ai„+g, (k)g, (k')ait aai, ]
k, k'

+ (Si —Sz) [g, (k)g (k')ag o'ag, + H.c.] +EtISi S2,

where g, (k) =cosk. R, g, (k) =i sink. R.
This model is difficult to do calculations with because it has k-dependent coupling constants. In the Kondo problem

the k dependence of the coupling constant is known to be irrelevant; we expect the same in the present problem. We
take the value of g, , at k =kF to get (after integration over angles)

H;„i = gq k (S ) +Sz) (J,ak, crag, +Jgap, mak, ) +S( —Sp) (iJ at, ,eat„+ H.c.) +KOS~ ' S2.

Here

J =(J,j.)'", J, .=(J,/2)(1+-sink, W/k, W)

(s)

The RKKY interaction generated to second order is

Httyt, v =(81n2)p(j, —J, ) S~.Sz=KOS]'S2,

which is always ferromagnetic. Antiferromagnetic cou-
plings can be studied by adjustment of Eo or alternately
by the use of general values for J /J„j /J, with Ko set
to zero.

Wilson's momentum-shell renormalization together
with his choice of basis states on the two-channel Hamil-
tonian gives the recursion relation for the Hamiltonian
H~ at the %th iteration:

Htv+i =A'"Htv+ g (fivtfiv+it+f((tv+i)tfvt),
p=e, o

where A is the step size for logarithmic discretization,
and ftv, and ftv, are basis operators obtained from ak,
and ap, by transformations used by Wilson. '

In our calculations, we have kept up to about 1200
states at each iteration and used A=2. 5 and 3. For the
single-impurity problem about 1200 states and A =2
yielded Wilson an accuracy in the large iteration eigen-
values of —10 . In our two-channel problem the
asymptotic accuracy achieved for the coupling constants
we use is better than 10

There are three quantum numbers specifying the
many-body eigenstates. We have adopted the notation
(Q, 2S,P)„ for the states, the first number standing for
total charge above or below charge neutrality, the second
number standing for t~ice the total spin, and the third
for the parity —0 for even and 1 for odd. The subscript
labels in sequence of increasing energy the states with
the same quantum numbers. To arrive at some qualita-
tive conclusions, we display in Fig. 1 the flow of the ener-
gy of the lowest bunch of states which are asymptotically
degenerate in the strong-coupling limit for various initial
parameters. It should be remembered that an iteration

N corresponds roughly to a temperature A t (ir, units
of the bandwidth).

(a) J, =J, (noninteracting impurities) From .E—q.
(7) or in the first iterations of the renormalization pro-
cedure, no RKKY coupling between the two moments is
introduced for J,/J, =1. This is true at any iteration.
Figure 1(a) shows the flow of the eigenvalues at odd
iterations. We have also separately performed a calcula-
tion for a single magnetic impurity. All the eigenvalues
shown in Fig. 1(a) are obtained from a combination of'

appropriate pairs of the single-impurity eigenvalues.
There are two kinds of symmetries in the noninteract-

ing impurity Hamiltonian, which are reflected in the de-
generacies in Fig. 1(a). First, there is the parity symme-
try, reflected for instance in the degeneracy of the 110~
and the 111~ states. Second, there is the simultaneous
rotation of spin triplet to spin singlet with a flip of parity.
This is reflected, for instance in the degeneracy of the
000i and 021~ states.

(b) 5=1 two channel prob-lem This is ca.—lculated
by our keeping only the triplet state of S~+S2 in Ho
The second term in Ho is then electively zero since it
has matrix elements only between the singlet and triplet
states of S~+Sz. The problem then corresponds to a
spin-1 impurity interacting with two conduction-electron
channels with coupling constants J, and J„respectively.
Let J, & J,. A two-stage Kondo eAect is expected with
an intermediate unstable spin- —,

' fixed point character-
ized by a Kondo temperature TK(j, ) and a low-tem-
perature spin-0 fixed point characterized by a lower
Kondo temperature TK(J, ). Figure 1(b) shows the
Hamiltonian flows for this case. Both the symmetries
mentioned for the noninteracting impurity case are ab-
sent. The ground state is 021] and the 000] state is de-
generate with the 0002 state. Such degeneracies are
characteristic of the spin-1 Kondo efIect. The intermedi-
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from the strong-coupling fixed point for the two-impurity problem (compared to two for the one-impurity problem). In
terms of these such an eAective Hamiltonian is

0~2=+~, tt (fot J it, +c.c.)+g&Ut, (not, —1) +U„j(no, —1)(no, —
I )+g (fo,Qo, j'o, +o„+cc )I

+J ofo ~fo foo'~foo,t

wh««=1, l and not is 0, 1, and 2. The coefficients in Ht2 are extracted from the fits to the asymptotic spectra such
as shown in Fig. 1(c). For noninteracting impurities [case (a) above], one must have U, =U, =U„=—J„and t, =t,

The relationship between the parameters is quite different for case (c). In Fig. 2 the numerically determined U„U,
n«maiized to the one-spin density of states p are shown for various values of Jo and Ko. Within our numeri-

cal accuracy, we find that they are all given by

[(1.7 ~ 0.3)pJo[ ' (pD) ' exp((2pJo) ' [1+a;[pKo/(pJo) 2]I ) = (pT~) (10)

where D is the bandwidth and a; are constants whose value is diA'erent for the three terms. For J & J„
a =(009~001)/Sln2, aU =(0.27+ 002)/Sln2, and aJ =(0.17~002)/81n2. The ratio = I:3:2 between these
quantities is noteworthy. We find U„decreasing towards 0 as a function of Ko/TK, it must be 0 for the S = I problem.
A linear relationship between t, and U„and t, and U, is expected based on Nozieres's "weak-universality" argument.
Our numerical results give t, , = —(1+'0.3)U, , Note that for Ko ferromagnetic the resonance width decreases from
i he Kondo value.

Equation (9) can be reexpressed in terms of sites 1 and 2. One then finds that the Hamiltonian displays ferromag-
netic interactions among quasiparticle interactions at sites 1 and 2 for ferromagnetic Ko. Our preliminary calculations
for antiferrornagnetic Ko lead to an increased resonance width and antiferromagnetic interactions between such quasi-
particles.

Following Nozieres and Blandin, we may construct a phase-shift expansion from Eq. (9):

2 tr+ a, ~+ (0„+y„)Snot + (Ct, —y, )6n 1+ (p —
3 hatt )$n t

and similar expression for 6, 1, 6, 1, etc. Here a~ is relat-
ed to t~, p„—3y„ to U„p„ to U„, and y„ to J„.
With &„=0for the ferromagnetic case, weak universali-
ty gives az = —

2p(pzz —3yzz). Wilson's ratio can be
calculated to be

(~/Z)/(~C/C) =2+4p(t „+p„)/(a, + a, ),

which is thus no longer universal.
We have shown that the Hamiltonian (9) is necessary

to describe the low-temperature behavior to two magnet-
ic impurities for Ao« TK. This has important implica-
tions for the heavy-fermion problem. If, as is expected,
the characteristic three-particle interaction energies are
much smaller than pair interaction energies, the low-
temperature behavior of the heavy-fermion lattice may
be discussed in terms of a sum of pair Hamiltonians of
the form (9).
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