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Computationally efficient discrete space-time models of phase-ordering dynamics of thermodynamical-
ly unstable systems (e.g., spinodal decomposition) are proposed. Two-dimensional lattice (100x100)
simulations were performed to obtain scaled form factors.
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One of the difficult outstanding problems in phase
transitions is that of the ordering dynamics of thermo-
dynamically unstable systems, e.g., quenched binary al-
loys.! The process depends crucially on whether the or-
der parameter of the system is conserved or not. In the
former case the process has been called spinodal decom-
position. In this Letter, to cover both cases, we use the
term phase ordering for the ordering process of unstable
phases in general.

The purpose of the present Letter is to propose compu-
tationally efficient models of phase-ordering dynamics
utilizing discretized space and time corresponding to the
usual coarse-grained description of the dynamics.

The theoretical study of phase ordering has a long his-
tory since the days of Cahn and Hilliard,? but the true
revitalization of the study came from the observation of
the approximate scaling law in Monte Carlo simulations
by Marro et al.** They suggested that the normalized
form factor S(k,z) has a scaling regime in which it
behaves as

Sk, 1) =1()DU)k), (1)

where k is the wave vector, ¢ the time, ® a master func-
tion (scaling function), /(1) a time-dependent length
scale which behaves as /() ~? for some positive num-
ber ¢, and d the spatial dimensionality. Furukawa® also
argued for (1),

Experimentally, the exponent seems to behave as fol-
lows. When the order parameter is not conserved
0= 1+.% and when it is conserved but without hydro-
dynamic interactions, ¢=7%.7 If hydrodynamics is
relevant, ¢==1.%  Analytically, Ohta, Jasnow, and
Kawasaki® studied the nonconserved-order-parameter
(NOP) case and obtained ¢ as well as ®. For the
conserved-order-parameter (COP) case, Ohta'® studied
the case of the off-critical quench and obtained ¢ = + as
well as @ (see also the work of Kawasaki and Ohta'l).
Although for initial stages a successful theory exists,'?
there is no reliable theoretical work for the scaling re-
gime in the most interesting case of critical quenching.

Extant Monte Carlo simulations are without hydro-
dynamic interactions because of their long-range nature.
The NOP case has been studied by Phani et al.* They

found ¢== % and obtained ®. For the COP case, exten-

sive simulations have been performed by Marro et al.’?
They found that ¢~0.2 to 0.3 depending on the depths
of quenching and the off criticality. It is probable that
these simulations are not for sufficiently long time.'?
Petschek and Metiu and Miyazaki et al.'* numerically
solved the Cahn-Hilliard (CH) equation but they did not
study the scaling regime.

[t is clear that we need computationally efficient
methods to study the scaling regime. To this end the
most effective way is to construct computationally effi-
cient minimal models of phase ordering which capture
the essence of the physics.

Let us first recall that the conventional description of
phase ordering uses spatially coarse-grained free-energy
functionals. This description is inevitably coarse-grained
in time also; the time-dependent Ginzburg-Landau and
CH equations should be regarded as Ansatze connecting
the coarse-grained free energy with the dynamics.

We propose that the space-time coarse-graining in the
conventional models should be explicitly imposed by use
of a discretized space-time lattice. The spatial lattice de-
scribes the dynamics of regions of order not much small-
er than the correlation length & Notice that, if we
discretize existing partial differential equation models
using standard schemes, the single-cell dynamics, which
must be purely relaxational, becomes oscillatory or even
chaotic when we choose the time increment to be big,
viz. of order £%/D, where D is the typical diffusion
coefficient. Therefore, we should model phase-ordering
dynamics directly without referring to any continuum
model. This is tantamount to proposing new Ansdtze.

First, we mimic the single-cell behavior by a one-to-
one map on the set of real numbers R (identified with
the set of possible values of the order parameter), and
then we couple them spatially through local averaging.
The conservation of the order parameter is the property
of the relation among spatially coupled cells. Hence, to
mimic the behavior of a single cell, we may ignore the
conservation law. Thus, the purely relaxational single-
cell behavior can be mimicked by a one-to-one map on R
with two hyperbolic sinks and one hyperbolic source.
The former corresponds to new equilibrium order-
parameter values after quenching, and the latter the
free-energy minimum state before quenching. Figure I
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FIG. 1. (a) The coarse-grained free energy F at roughly the
scale of the correlation length. If the local order parameter
takes the value at 1 (17), then the next value after a unit time
step is given by the value at 2 (2'), etc. This motivates the
one-to-one f:R— R as is shown in (b) which can describe the
behavior. 4 and A’ are hyperbolic sinks and R the source. (c)
The flow due to this map. What we really need is only (c)
which requires a one-to-one map similar to (b).

and its legend motivate the choice of the map; we must
stress that this is not the derivative of the map. Strictly
speaking, in our Ansdtze we do not even need free-
energy functionals; only the features of local dynamics
[Fig. 1(c)] are needed. We believe that any such one-
to-one map f(x) is in the same universality class. It is
one of the critical points of our modeling that the one-
to-one nature of the map automatically excludes!’ the

v+ 1,n)=f(¥(,n))+DIK¥(,n)) —¥(t,n) ] =F[v(,n)],

500
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FIG. 2. Thin arrows indicate the time evolution of textures
of the nonconserved-order-parameter case, and thick arrows
that of the conserved-order-parameter case, both from the
same initial random configuration 0. The numbers denote
necessary time steps from 0. Only cells with positive order pa-
rameter are marked.

possibility of oscillatory or chaotic local dynamics which
plagues the large-time-step discretization of continuum
models.

Thus, we mimic the single-cell discrete dynamics as

v(t+1,n)=f(¥(,n)), 2)

where ¥(z,n) is the value of the order parameter in the
cell n at time ¢. Next, we must introduce the intercell
coupling. Without the conservation of the order parame-
ter the diffusion should cause the increment of ¥ propor-
tional to its difference from the average of the order pa-
rameter in the neighborhood cells. Thus the discrete
model for the NOP cases reads '®

)

where (()) is the average in the neighborhood except for the center cell (the nth cell). We believe that any isotropic lo-
cal average is acceptable. Here we define ({)) on the square lattice as follows:

«w(z,n))) =3 (¥ in the nearest-neighbor cells)/6 + > (¥ in the next-nearest-neighbor cells)/12.

The conservation of the order parameter implies the
local sum rule that when there is an exchange of order-
parameter values between a cell and its neighboring
cells, there should not be any net change of the order pa-
rameter inside of the neighborhood surrounding the
center cell. Since the net gain of the order parameter by
the center cell is given by F[¥] — ¥, the discrete model
for the conserved case reads

v(t+1,n)
=Flw(t,n)] —LFlw(,n)] —w(,n)), (5)

where the subtraction corresponds to the extra Laplacian
in the CH equation.

4)

The models constructed above are deterministic mod-
els. It is generally believed that in the scaling regime
stochastic effects are not important.!” Thus for our pre-
liminary study we use deterministic models in accor-
dance with recent theoretical attempts.®!! We are
studying models which include noise, with no particular

loss of computational efficiency.!® Our deterministic

models may be regarded as coupled map-lattice mod-

els.'” We believe that computationally efficient space-

time discrete modeling of real nonequilibrium phenome-
na?% is worth persuing seriously.
In our actual simulations, we adopted several maps in-
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FIG. 3. The scaled form factor ® for the nonconserved—
order-parameter case. Filled circles denote ® at t =100, and
open circles at t =180. The curve is the theoretical curve by
Ohta et al. (Ref. 9) shifted and scaled appropriately. For
smaller kz'2 we have a reasonable master curve which is in
agreement with the theoretical curve. For larger k"2 we have
not yet obtained a single master curve, but we see an increase
of the tail toward the theoretical curve.

cluding piecewise linear maps and f(x) =Atanhx. Here
we present results due to the hyperbolic tangent model,
but outcomes of other maps are very similar, supporting
the above-mentioned universality belief, which strongly
supports our Ansdatze. We will not discuss the relation
between parameters in our models and those in more
“realistic” models but note that our simulations shown
here correspond to deep quenching with “hard” bound-
ary walls. 2!

All our results were obtained on the two-lattice of size
100x 100 with periodic boundary conditions and with
f(x)=1.3tanhx, D=0.5. Form factors were calculated
as averages over thirty different initial configurations.
Calculations were performed on a VAX-11 computer
(without array processors). It took 1.98 sec on the cen-
tral processing unit to update the whole lattice in the
NOP case and 3.33 sec on the central processing unit in
the COP case. As can be seen from Fig. 2, well-
developed patterns appeared within twenty updates in
both cases. In this figure the initial conditions are
chosen to be random (uniformly distributed between
+0.125).

In Fig. 3, S(k,t)t ~! for different times are superposed
as functions of kz'? for the NOP case. From this we
may conclude that there is a master function with
[(¢) =12 Actually, what we did is to plot S(k,t)t =%
vs kt® for various exponents ¢ and searched the range of
¢ which give reasonable master curves. We found that
¢=0.49 =0.03 allows reasonable single master curves.
The Monte Carlo S(k,z)* for the larger k region
behaves as k %%, violating Porod’s law.?? In contrast,
our results are consistent (~k ~3) with this law
[k3S(k,1) exhibits wide flat plateaus).
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FIG. 4. The scaled form factor @ for the conserved—order-
parameter case. The results for 1 =500, 550, 600, 650, and 700
are superposed. We can include the data for ¢ larger than 300
with slightly more scatter of points. In the vicinity of the peak,
sampling error cannot be ignored.

In Fig. 4 an analogous master-curve plot for the COP
case is shown. This time we found that the exponent
¢=0.33+0.03 gives reasonable master curves. Unfor-
tunately, in this case there is no analytic result that we
can compare with. If we choose 4 =1.2, D =0.1, we can
simulate the so-called soft-wall case.?> Although the
wall thickness eventually becomes much smaller than the
typical size of patterns, the transition from the thick (or
soft) to the thin-wall regime takes very long. In this
transition regime, we got ¢~ & to have a single master
curve. Therefore, we suspect that the exponents so far
observed by the Monte Carlo method are not truly in the
scaling regime, where the walls must be thin relative to
the representative scale of patterns.

To summarize, we have proposed cell-dynamical-
system models (or Ansdrze) of phase-ordering dynamics,
which are sufficiently realistic and computationally
efficient.
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