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Hydrodynamic Boundary Conditions and Cooling in Superfluid 3He
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In their superfluid state, 3He and He need diferent hydrodynamic boundary conditions. These have
been derived and applied to various experimentally relevant situations, especially cooling. While one sur-
face transport coefficient, the Kapitza resistance, is sufficient to account for any cooling setup in He,
three are needed in He.

PACS numbers: 67.50.Fi, 67.40.—w

Which, and how many, boundary conditions does one
need to find the solution appropriate for a superfluid ex-
changing energy and momentum with its surroundings?
This seemingly simple question has not, in fact, received
much attention in the past. Take the case of vanishing
mass flow, g=0: In normal fluids, all one needs is the
value of the entropy flow f, which fixes the thermal gra-
dient at the boundary, f= —(tc/T) T'(0), and yields
uniqueness of the solution to the hydrodynamic equa-
t ion s. I n super fluids, one may expect on physical
grounds that f alone should again be enough. However,
there are two flow fields here, l. , and I. „, and one needs
an additional boundary condition, such as a prescription
on how to divide the entropy flow, f=sv„(tc/T) T—', be-
tween l. „and T'. If one can neglect dissipative terms, as
is plausible in the study of sound propagation in He II,
one may follow Khalatnikov' to give the whole load of
thermal transport to t „=f/s On the oth. er hand, there
is much to be said for the other extreme, t „(0)=0 at the
boundary, where T' carries the whole load. In fact, with

I, =i „=0 at the interface, in its rest frame, Brand and
Cross were able to account for the large damping that is

observed in U-tube experiments of superfluid He.
We have studied this question within the hydrodynam-

ic framework: With the help of conservation laws and ir-
reversible thermodynamics, we have derived the general
structure of the boundary conditions, parametrized by
three surface Onsager coefticients. In He II, they com-
bine to yield only one, the Kapitza resistance, for all con-
ceivable experimental situations. And the boundary con-
ditions reduce to those of Khalatnikov, supplemented by
T'(0) =0. In superfluid He, all three Onsager coef-
ficients remain independent and hence relevant to the in-

terpretation of diN'erent experimental situations. Espe-
cially, no one single Kapitza resistance can account for
all cooling data. For instance, a negative Kapitza resis-
tance becomes possible in certain situations.

We start with a brief discussion of the number of
boundary conditions and the peculiar situation of the col-
lective modes in the two-fluid hydrodynamics: Since we

are studying the spatial boundary conditions, it is ap-
propriate to take the Fourier transform of the linearized
hydrodynamic equations' in time. In addition, we shall
assume a one-dimensional geometry and neglect the
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Terms of order Im Ic t I/Re [c t j have been neglected.
Note also that ImIcg —co. a = —', tl

—2jtp+ gq+ (3p
denotes a repetitive combination of shear viscosities
defined as usual, ' while g, tr=tl/12d accounts for lateral
damping in a geometry not strictly one dimensional.
Except for g and f, all the variables T, T', v„, v„', and p
participate in this pair of modes, which we may refer to
as the superfluid q mode, or sq mode. Since they alone
survive the limit co 0, they reduce to the stationary
solution, calculated by Saslow and Putterman for an

transverse component of i„. Then we are left with four
coupled, ordinary, second-order differential equations,
given by the equations of motion for p, s, g, and I,
With neglect of dissipative terms, these equations are of
first order, for which four boundary conditions are need-
ed. They may be given by g and f, on each side, and will

determine the four amplitudes of first and second sounds
in both directions. Taking dissipative terms into account
introduces unexpected problems. We can rewrite the
above four diflerential equations into six of first order,
with g, T, T', ~„, I. „', and the pressure p as the variables.
(Note that g"= —icop', while p" does not appear in the
equations. ) Therefore, we need six boundary conditions
for this general case and two additional modes, which
seem to be lacking. A more careful evaluation of the
characteristic polynomial, however, shows that it is
fourth order in co and sixth in q. So we have four m

modes yet six q modes: In addition to the sounds,

qt = ~ co/ct and q2= ~ co/c2, we must have two that
remain finite for vanishing frequency. [In other words,
the linearized hydrodynamic equations have introduced
an autonomic length scale here. This is not the case in

normal fluids, whose polynomial is third order in co and
fourth in q: Its three co modes, co~ = ~ e~q, RENT =DTq,
correspond trivially to four q modes: qt = ~ co/ct and
qT= 4 (ito/DT)' ]. The two additional q modes of the
superfluid are q, = ~i/)(co), wher. e X, to first order in co,

is given by
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open geometry (i.e. , tl, a. =0):

T T =T~ e +T e

sv„=x(T—T )+f, (2)

yield

T, /f = —(a+co)/N,

AT/f =(i+bo+c. cr)/N,
(5)

R = Tkfo =fpAT+ (av„'+Pg')j, /p, (3)

~here dA =Az —Ap and A—:(AL+AR)/2 for T and fo,
and R,/T denotes the surface entropy production.
Therefore, we can set

fo =a/s T+c(av„'+ Pg ')/p,

j, =cnT+b(av„'+Pg')/p,
(4)

with the surface Onsager coeScients a, b & 0, and
c (ab. In this context, it is important to realize that
the force av„'+pg' stems from a combination of the
fluxes of the equations of motior. for g and v, . Its time-
reversal property must therefore be counted as that of g
and i, . It is therefore even rather than odd, resulting in

a symmetric Onsager matrix. Barring melting or eva-
poration, Eqs. (4) and g =pu are the most general
boundary conditions compatible with conservation laws
and irreversible thermodynamics.

The simplest, and very instructive, application of these
boundary conditions is to calculate the amplitude T, of
the stationary solution (g =0, f=const) in a semi-
infinite (x & 0, hence T,+ =0) and open (tl, tr =0)
geometry. Inserting Eqs. (2) in Eqs. (4) to eliminate»„'
and j, = —pi „, we obtain two equations for h, T and T,
with f as the driving force. They are easily solved to

where x = ic/W and g,f=const.
With T, and T,+, we have now the correct number of

six amplitudes, to be determined by six boundary condi-
tions. Next, we shall derive the structure of these bound-

ary conditions. The energy flux normal to the interface,
to quadratic order and with vanishing shear flow, is

given as QL =Tzfi+ (ctvn+pg')j, /p for the superfluid
on the left (L), x &0, and Qtt =Tttf~ for the solid on
the right (R), x & 0. Here, j, =p, (v, —v„), a is defined
above, and p =pl —$3p. An additional summand in Qtt,
proportional to the longitudinal component of the stress
field, has been set equal to zero, because since it is a
measure of the energy required for displacing a particle
from the bulk solid to the surface, it should vanish at
the interface. Besides, keeping it only leads to a bound-

ary condition for the solid. Another summand —g was
eliminated by going to the rest frame of the interface.
(Only when one deals with melting or evaporation is the
mass current across the interface nonzero. ) The mass
and entropy flow, go and fa, in the rest frame are related
to the respective quantities of the lab frame by

go =g —pu =0, f0=f —su = —crj, —xT'/T, where u is

the interface velocity. Now, the energy flux in the rest
frame is continuous across the interface; hence

2 =N/(Ic+bcr +a+2co).

An interesting conclusion that will be useful below fol-
lows from the above observation: If we are only interest-
ed in the physics of the helium bulk, ix i

»A. , then we
obviously could have worked with the much simpler,
effective boundary conditions:

fo=hhti T, t „' =0. (7)

Next, we turn our attention to nonstationary solutions
and finite geometry. From this point on, we need to dis-
tinguish between He and He. In He II, X is exceed-
ingly small, X=0.1 pm at 1.2 K, larger at lower temper-
atures and smaller at higher. (And if X approaches the
size of a microscopic correlation length, the whole theory
of course becomes inadequate. ) At any reasonable fre-
quency and dimension of the geometry, k is by far the
smallest length scale, and the hydrodynamic behavior at
x (X is really not accessible to experiments. Therefore,
we can confine ourselves to x )& X and again consider the
effective surface entropy production R, . However, for
x » k, j,= fo/cr+0(co) is, to l—owest order in co, not in-

where N =@a+(ab —v )cr N. ote first that f (or alter-
natively Ttt, the wall temperature) is the only external
parameter here, and so our intuitive physical argument
that once f is fixed, the solution must be unique, is
indeed correct. Second, both xT'/T and sv„are propor-
tional to f; cf. Eqs. (2) and (5). Hence Eqs. (4) indeed
provide the prescription on how to divide the heat load.
Especially, for f=0, we have T'=0 and v„=0. Third,
with f & 0 going to the right, we have T, & 0 and
AT) 0, if c=0. This is the "normal" case: Close to the
wall, the far-away constant temperature T decays ex-
ponentially, becomes TL = T + T, at x=0, then jumps
down by AT =Tz —Ttt, achieving a total (bulk) temper-
ature difference of AqT=—T —Tg =AT —T, . Gen-
erally c&0; then two "abnormal" cases are also possible:
(1) exponential increase of the sq mode, T, & 0,
hT & 0, or (2) negative Kapitza resistance, T, & 0,
hT & 0. However, d~T & 0 always holds, and this is

easy to understand. When we derived Eq. (3), the thick-
ness of the boundary was not specified, and we could
have taken it to include the exponential decay of the sq
mode, which is the only place in the bulk where entropy
is being produced. Then the total entropy production
can be considered as an effective surface one, R,
=fod~T+ (at„'+Pg')j, /p, where v„', g', and j, are to be
taken at x »X. With v„' =g'=0, we have R, =fdic T and

f =RABAT Since R, & 0. , we always have dtiT &0 if

f & 0. By use of Eqs. (5) the effective Kapitza conduc-
tance A is identified to be

801



VOLUME 58, NUMBER 8 PHYSICAL RFVIEW LETTERS 23 FEBRUARY 1987

dependent of fp, and we have

R, =fp(AT —(ai„'+Pg')/s]+o(cp ).

The three boundary conditions are therefore

fp =A [aT (ai „—'+ Pg')/s]+o(cp'),

g=pu, and the vanishing of the sq mode. These are, to
zeroth order in m, the Khalatnikov boundary condition of
Eqs. (7). Now, the first-order terms are proportional to

qi 2, and compared to the zeroth-order ones —k ', are
vastly smaller. Therefore, Eqs. (7) with g=pu are valid
also for finite frequency and geometry.

Turning our attention now to He, we shall concen-
trate on the typical superAuid behavior rather than the
liquid-crystal or antiferrornagnetic ones, or the interplay
between them. So we shall assume that all the preferred
directions are clamped by appropriate boundary condi-
tions and do not participate in the dynamics. Even then,
there are differences from He, the major one being the
much larger k. It is estimated to be 0.2, 4, and 700 cm
at 2, 1, and 0.5 mK, respectively. Therefore, the devia-

tions of the hydrodynamic solution from its bulk behav-
ior become relevant and experimentally accessible. For
stationary setups, the existence of the sq mode and the
predictions of Eqs. (5) and (6), including possibly a neg-
ative Kapitza resistance, can be directly verified. A
second difference from He is the much larger q2, rnak-

ing terms of higher order in co more important. We shall
give two examples of oscillatory experiments.

The first example is given by a layer of helium,
sandwiched between two parallel plates of separation D.
Now, what is the temperature distribution in the liquid if
both plates have a temperature T~ = To+ d T~e '"'?
The answer is simple enough for He, in which D))k.
Since T is essentially spatially constant, we have (Tz—T)A = f=+ —,

' —pD(6cr/BT)T, requiring the solution
T=Tp+AT&e ' '/(1 —icpr), where r= —,

' A 'pDcio/
cilT. For He and D —k, we have to look for a nonuni-
form solution in terms of the sq mode and first and
second sound, and determine these six amplitudes by the
three boundary condition, Eqs. (4), on each interface.
Retaining only terms of first order in co, we obtain
T = Tp+AT&e '"'(1 +i cur), where with g

= —,
' D/X and

E =(ab —cz)

a +( + )EpD
po 20

r(x) =
9T

1
—cosh —+ g sech( + b+ —+XX C p

o a

1+(p X/ab)(1+c E)t aha

2c pDEtanh
crD 2

Note that since T is a function of x, so is r When we t. ake the limit /xX, D/X ~, Eq. (8) reduces to the He expres-
sion, with A given by Eq. (6).

The second example is given by a semi-infinite geometry with an oscillating entropy current 6f—e '"' and an im-

movable wall, g=0. To the lowest order (—cp ), we have the sq mode as given by Eq. (5) in addition to second sound,
and no first sound at all. To the next order (—co'), however, all three modes contribute to g; only their sum remains
zero. This leads to a first-sound amplitude as given by

6P/6f =icp(a+ pP) [ci /(cl +cp ) —(H+cE)/(H+ o/x)]/cis, (9)

where H =(1+c2E)/baAsimila. r. effect arises from
the frequency-independent thermal expansion, which was
neglected in the calculation of Eq. (9). Since they are
approximately equal in magnitude at co=25/sec in He,
the experiment should be performed at higher frequen-
cies. (For He, the same magnitude would be achieved
for the unrealistic frequency of co —10 /sec. )

Finally, we would like to comment on two experi-
rnents. The first is the vibrating-wire measurement by
Carless, Hall, and Hook. ' In interpretation of their
data, the boundary condition j, =0 was employed and
found to be quite successful. Note, however, that it does
not imply experimental evidence that the surface
coefficients, b and c of Eqs. (4), acquire vanishing values,
or that the corresponding contribution of the surface en-

tropy production vanishes. This is because of the second
boundary condition they employed, fp=0. And as will

be shown below, if the rate of heat transfer fp vanishes,
so does the amplitude of the sq mode, leading to T'=0
and therefore j, =0. Let us, for simplicity, think about

an infinite, oscillating plane rather than a vibrating wire.
Eliminating AT from Eqs. (4) and employing fp = —crj,
—xT'/T, we arrive at.

Af p
=Bg '+ Cfp+ DT'+ ET", (10)

where A, B, . . . , E are constants, given by A = —p(c
+a/cr)/(ab —c ), B =P+ a/p, C = a/s, D = a xp/(ab
—c )crT, and E =ax/sT. To zeroth order in cp, the
values of g and fp at the boundary directly yield the am-
plitudes of first and second sound, respectively, while Eq.
(10) determines the amplitude of the sq mode, propor-
tional to fp, as given in Eq. (5). (To the given order,
only T' and T" contain the sq amplitude, while both
g'=iqig and fp =iq2fp, representing the damping of
first and second sound, respectively, are of first order in

cp. ) With fp being zero, so is the sq amplitude. To the
next order in co, the sq amplitude is proportional to qiBg,
a tiny quantity of order of the viscous penetration depth
over first-sound wavelength. With fp=0, both fp and
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the second-sound contribution to T' are of order m .
The second experiment concerns the U tube already

mentioned. Here, things are more complicated. The
oscillation in the tube changes both the temperature and
the chemical potential of the liquid and forces it to ex-
change heat and mass with the vapor above. With

fo,goe0 this is obviously a situation more general than
considered in this paper. Now, one may of course as-
sume appropriate values of the surface transport
coeicients to simplify it again, such as putting b =c=0.
Then j, =0 irrespective of the value of fo. In fact, in a
recent microscopic calculation, this choice was shown to
hold for both diAuse and specular reflections at most
temperatures. " However, we have an observation to re-
port in this context: Instead of putting b =c=O, we
could have set the entropy o =0 to achieve the same re-
sults, cf. Eqs. (5). And indeed, the microscopic calcula-
tion assumed vanishing entropy from the outset. Be-
cause of the low temperature, the entropy in He is of
course a small quantity, yet what need to be shown are
the inequalities a » co, tc» (b —c /a) tT, and
x»bcr +ca; cf. Eqs. (5). Hence, the boundary condi-
tion j, =0 as the only possible choice still awaits micro-
scopic verification.

In summary, with the help of conservation laws and ir-
reversible thermodynamics, we have derived the bound-

ary condition for a superfluid contained by solid walls.
For He and vanishing frequencies, they reduce to the
much simpler Khalatnikov boundary conditions, which
were also shown to yield excellent approximation for
finite frequencies. For He, the general boundary condi-

tions were applied to various experimentally relevant sit-
uations, resulting in a number of predictions including a
negative Kapitza resistance and generation of first sound
by an oscillating entropy current.

We enjoyed helpful discussions with Mike Cross at the
beginning and Peter Wolfe at the end of this work; Nils
Schopohl made useful suggestions in between.
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