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Calculations of the phonon spectrum of argon with use of a realistic potential, and with the inclusion
of short-range correlation effects by means of the Horner Ansatz, are in excellent agreement with recent
neutron-scattering experiments, even within 3 K of the melting temperature. The elastic constants and
heat capacity C, are also in good agreement. The method also gives results for a model of xenon at
163.9 K which agree well with values obtained with use of the Monte Carlo method.
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The theory of lattice dynamics has been formulated
for some time.! But it is well known that a detailed ap-
plication of theoretical results to the experiments, espe-
cially near melting, runs into formidable problems. This
is particularly true for rare-gas solids (RGS), where
there are strong anharmonicities and the need for short-
range correlations due to the hard core in the interatom-
ic potential. A way to cope with these problems is to in-
troduce computer simulation techniques, but these,
though exact in principle, are often still of low numerical
accuracy, particularly molecular-dynamics results for
S(Q,w), and they do not apply at low temperatures.

We argue that a reliable quantitative examination of
the contents of lattice dynamics applied to RGS over the
whole available temperature range is long overdue. Only
in this way can we be sure of the validity of the practical
approximation needed to make the theoretical expres-
sions tractable and hence of the usefulness of the under-
lying physical ideas. There is clearly great intellectual
satisfaction in being able to show that a single formula-
tion of lattice dynamics can span the entire range of ex-
istence of these solids.

Recently, Eckert and Youngblood? have made new de-
tailed measurements of the phonon frequencies and line

shapes in argon at 81 K. It is the purpose of this Letter
to show that their measured dispersion curves are excel-
lently described by a lattice-dynamical theory which in-
cludes short-range correlation effects within the Horner
Ansatz.! In addition, we make some comparisons with
Monte Carlo results for a nearest-neighbor Lennard-
Jones model of xenon, again at a temperature very close
to melting. The self-consistent harmonic approximation
(SCH) with anharmonic perturbation theory has been
used by Glyde and Smoes? in calculation of S(Q,w) in
argon. The Horner formalism goes beyond this work in
three respects: (1) The pair correlation function is
modified from its SCH form g, by factors to give the
correct behavior at short distances while preserving the
normalization, peak positions, and second moment. For
a neighbor at site R,

2
g(R, 1) =gy (R,,Dexp{—Bo(r} Y a;(r —R,)".
i=0
(2) It is assumed that the averaged potential well in
which a pair of atoms moves has time to relax as the
atoms move. g(R,,r) thus depends on the instantaneous
value of R, and the force constants M,g contain contri-

butions arising from the variation of the coefficients a;
with R,

2
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i=0

(3) The cubic shifts to the phonon energies are included |

self-consistently. That is, the intermediate phonon ener-
gies used in the calculation of the cubic shifts themselves
include the shifts. While this may seem plausible, it
should be noted that there are many other corrections to
the phonon self-energies, which are of the same order,
that are being omitted. Numerical cancellation has
played an important role in the subject, and so the test of
the Horner Ansatz lies in the results.

We have applied the formalism to a realistic model of
3Ar. The quadratic force constants were calculated for

eight shells of neighbors with use of the two-body poten-
tial of Aziz and Chen,* supplemented by the three-body
Axilrod-Teller-Muto potential.’> The force constants for
the second- and third-neighbor shells were smeared in
the SCH approximation, while for the nearest neighbors
we used the full Horner Ansatz The cubic matrix ele-
ments included the contributions from the first three
shells of neighbors. In order to include the cubic shifts
self-consistently, the shifts were calculated for 27 pho-
nons at 12 wave vectors and a set of corrections to the
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FIG. 1.
are the present calculation.

quadratic force constants for the first three shells of
neighbors were fitted to them. These corrections were
then applied in succeeding iterations of the SCH equa-
tions. Typically, eight iterations of the SCH equations
were performed before the cubic shifts were recalculated.

The phonon dispersion curves at 81 K, calculated from
the fitted force constants, are shown in Fig. 1. With the
exception of three points the agreement is excellent. The
zone-boundary longitudinal peak is extremely broad, and
the error estimate of Eckert and Youngblood encom-
passes our value. The discrepancy is probably due to the
two-phonon contribution to S(Q,w), which Glyde and
Smoes® have shown to give rise to a high-energy shoul-
der. The experimental points shown as hollow circles
were obtained serendipitously under conditions where
they should normally be invisible and are more uncertain
than the other values. The remaining discrepant point,
in the [110] direction, also seems to appear slightly high
in calculations at low temperatures,® and may indicate a
small shortcoming of the interatomic potential. Bearing
these comments in mind, we can claim that the agree-
ment which we obtain at a temperature within 3 K of the

Phonon dispersion relations in *®Ar at 81 K. Points are the neutron-scattering results of Eckert and Youngblood. Lines

melting point is as good as the agreement which can be
obtained at 10 K and we view this result with great satis-
faction.

It is also possible to extract values of the zero-sound
elastic constants from the slopes of the dispersion curves
at long wavelengths, using either curves measured by in-
elastic neutron scattering, or the calculated spectral
functions. Experimental measurements of the long-
wavelength modes were performed by Fujii et al.® at a
temperature of 82 K and the elastic constants they ob-
tained are given in Table I together with our calculated
values. The dispersion curves calculated for 82 K are in
excellent overall agreement with the measurements and
the small differences between the two steps of elastic
constants are probably entirely due to different pro-
cedures for getting the elastic constants from the disper-
sion curves. Also shown in the table are values of the
first-sound elastic constants measured by Brillouin
scattering, by Gewiirtz and Stoicheff.” The differences,
for ¢y; and especially cq4, are slightly larger, and outside
the experimental uncertainties, and may reflect a
difference between zero-sound and first-sound values.

TABLE I. Elastic constants in argon, at 82 K, and xenon, at 163.9 K.

Elastic constants (108 dyn/cm?)

C1 C12 C44
Ar, present theory 257%3 156 5 1302
Ar, neutron, Ref. 5 2486 153%5 124 =4
Ar, Brillouin, Ref. 6 2384 156 =3 112+3
Xe, present theory 3004 1505 1342
Xe, Monte Carlo, Ref. 7 290*x 1.5 154+ 1.5 117x1
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To explore this further we have made an additional
comparison, with values of the adiabatic constants calcu-
lated by the Monte Carlo method for a nearest-neighbor
Lennard-Jones solid.® The Lennard-Jones parameters
were chosen to correspond to xenon, since this should be
the most classical RGS, at a temperature of 163.9 K.
The results are also shown in the table, and it can be
seen that the deviations between the zero-sound and adi-
abatic constants follow a very similar pattern to the devi-
ations between zero-sound and first-sound values for ar-
gon. In particular, the difference in values for c44 is con-
sistent.

An additional intriguing application of the frequencies
calculated in the Horner formalism is in the evaluation
of the thermodynamic quantities. In theories such as im-
proved self-consistent theory, or the Monte Carlo
method, a thermodynamic variable such as the heat
capacity is not directly expressible as a single sum over
normal modes. However, the Horner formalism is
designed to generate a set of frequencies which in some
sense give the “‘best” description of the lattice dynamics,
and it is worth trying to use them to calculate thermo-
dynamic functions. In particular, we assume that the en-
tropy can be calculated with the use of the formula cor-
responding to a set of harmonic normal modes, since this
is known to work for the SCH and low-order perturba-
tion theories. The most direct comparison with experi-
ment is to calculate the heat capacity at constant pres-
sure, Cp, by evaluating the entropy at a number of close-
ly spaced temperatures, with the use, for each tempera-
ture, of the equilibrium lattice spacing for that tempera-
ture. In this way we obtain a value for argon at 80 K of
32.06 J/mole K. The experimental value is 33.17 J/mole
K,? and the difference is well within the range of es-
timated values for a vacancy contribution. To eliminate
this uncertainty, we have again made a comparison with
the Lennard-Jones model of xenon at 163.9 K, and with
Monte Carlo calculations.!® In this case, we calculated a
value for the heat capacity at constant volume, C,, of
2.60 times the gas constant R, while the best Monte Car-
lo value'® is 2.64 +0.015. While the differences seem to
be outside the combined uncertainties, the value given by
the present method is happily somewhat higher than the
value from improved self-consistent theory, 2.57.

Eckert and Youngblood? also reported experimental
results at 55 K. Our calculated results give agreement
with these values comparable to the agreement at 81 K.
We note that the lattice spacing reported by Eckert and
Youngblood, 5.440 A, should in fact be 5.386 A.'' This
suggests to us that the Horner A4nsatz holds quantitative-
ly to much lower temperatures then its original deriva-
tion suggested.

There is one area where the agreement between theory
and experiment may be worse. Eckert and Youngblood !
made detailed measurements of the line shapes of a num-

ber of phonons, and compared them with calculations by
Glyde and Smoes® which included multiphonon and in-
terference terms. We have calculated only the one-
phonon term and it does not adequately reproduce the
experimental results. In particular, while the extreme
broadening of the longitudinal mode at the [100] zone
boundary is reproduced, the transverse mode is calculat-
ed to be much sharper than is seen experimentally.
Despite these uncertainties, we feel that the frequen-
cies calculated with use of the high-T Horner Ansatz for
the pair correlation function and for the force constants
are the most useful which have been considered to date,
and represent an extension of the lattice-dynamical or
“phonon” description of a solid up to the melting point.
To the extent that short-range correlations as well as
long-range anharmonicities are important in the dynam-
ics of solids, our results show clearly the superiority of
self-consistent phonon theory including the Horner An-
satz. We know that results that are numerically some-
what inferior to ours can be obtained from simpler ver-
sions of lattice dynamics, e.g., improved self-consistent
type theories.® But such theories are plagued by patho-
logical divergencies which the Horner method cures. As
we have pointed out earlier, when we omit points (1)
and (2) above, but retain (3), we get divergent results. '?
A full account of our work will be published elsewhere.
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