
VOLUME 58, NUMBER 8 PHYSICAL REVIEW LETTERS 23 FEBRUARY 1987

Crossover in the Anderson Transition: Acoustic Localization with a Flow
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Acoustic waves propagating in a sufficiently disordered medium are localized because of multiple elas-
tic scattering. The presence of a uniform flow in the medium breaks time-reversal invariance and
changes the mechanism of localization. A field theory incorporating the crossover induced by a flow field
is described and the crossover behavior of the localization length is calculated. An experimental realiza-
tion of this phenomenon is proposed, using third sound in a superfluid film on a rough substrate with a
uniform superfluid flow.

PACS numbers: 63.20.Pw, 67.40.Pm, 71.55.Jv

The qualitative features of the Anderson transition are
modified by an external field which breaks time-reversal
invariance. Such a perturbation destroys the dominant
coherent backscattering mechanism responsible for local-
ization in systems with time-reversal invariance. The
result is a new mobility edge and a new set of critical ex-
ponents. The purpose of this Letter is to explore the
crossover between these two universality classes with
particular emphasis on an experimental realization de-
scribed by the classical wave equation.

In recent years there have been several experimental
and theoretical studies of localization in disordered
classical wave systems. Experiments probing the three-
dimensional weak-localization regime have been carried
out for light propagation in dense suspensions of poly-
styrene beads. Experiments have been proposed ' in

which one- and two-dimensional localization eA'ects

should be observable in third sound propagating on
rough substrates. In this Letter we propose an extension
of these third-sound experiments in which time-reversal
invariance is broken by a superflow.

Near two dimensions the Anderson transition can be
described as a phase transition in a nonlinear sigma
model with matrix fields. ' In the presence of time-
reversal invariance, the action which generates the
relevant two-particle Green's function may be expressed
by use of real fields and is invariant under pseudo-
orthogonal, O(n, n) transformations. When time-rever-
sal invariance is broken, the action must be expressed by
means of complex fields and is symmetric under pseu-
dounitary, U(n, n) transformations. These two field
theories have distinct nontrivial fixed points, P functions,
and exponents. The exponent describing the crossover
between these symmetries has been obtained by use of
perturbative methods"' and, more recently, by field
theory. ' In this note we describe a field theory which

contains both fixed points and present results for the
crossover exponent and the crossover function. The field
theory which we find is similar to that derived inde-
pendently in Ref. 13.

Third sound' is a propagating long-wavelength dis-
turbance of a superfluid film. At low temperatures third
sound has little damping and is well described by the
two-dimensional scalar wave equation. On a rough sub-
strate, ' third-sound waves experience multiple elastic
scattering which leads to either the diffusion or localiza-
tion of the energy of the disturbance. A coarse-grained
description of the propagation of third sound at low tem-
peratures on a substrate with random scatterers is given
in Ref. 5. It is straightforward to modify this description
to include the presence of a uniform flow field with veloc-
ity u. The equation of motion for the velocity potential
is

l(D/Dt ) [1+X(r) ] (D/Dt ) c'V'I y(r, t ) =O, —

where D/Dt= 6/Bt+u V is —the convective derivative,
Z(r ) is a delta-correlated Gaussian random variable,
(Z(r)L(r')) =y 8(r —r'), and c is the effective sound
speed on the substrate. For u =0, in one and two dimen-
sions all the modes of (1) are localized with localization
lengths that diverge as the frequency or disorder goes to
zero. It was shown in Refs. 5 and 6 that the strong-
localization regime, where the localization length ap-
proaches the mean free path, could be probed by means
of third sound.

The central theoretical quantity of interest in the
study of Anderson localization is the configuration-
averaged two-particle Green's function. This quantity
can be generated from a functional integral over two sets
of n complex replica fields. After integration over
configurations of the Gaussian disorder the averaged
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two-particle Green's function takes the form

(G~+(r! 0)Gp (0!r)& = lim lim J [dp](t i+(r)(t 1+(0)p&*-(0)P 1-(r)expI —A[&])
n 0 yI

0+

with

2

2 [p) =„ldrg p,* (r )s, [D —s, rI + c V l i', (r ) — drys, st! Dp, (r ) ! ! Dpi'(r ) !
a aP

(2a)

(2b)

where D:E+iu—V and E is the Fourier variable conju-
gate to t. The replica indices have two components:
a =(a,p) with a =1,2, . . . , n and p =+, —;[dp] indi-
cates a functional integral over all of the replica fields
while s, = —ip and the s,g term ensures the convergence
of the functional integral.

Except for the s g term the action is invariant under
pseudounitary, ' U(n, n) transformations of the replica
fields. Pruisken ' pointed out that when the time-
reversal symmetry-breaking field vanishes (u 0 in our
case) the real and imaginary parts of p, can be treated
as independent replica components and the action has a
larger O(2n, 2n) symmetry. In the limit n 0 this is

equivalent to the conventional formulation of the time-
reversal invariant problem where the action is written in

terms of real fields and has an O(n, n) symmetry.
Our object is to construct a field theory which incorpo-

rates the orthogonal and unitary symmetries and the
crossover between them. To this end we choose real re-
plica fields having three indices, a=(a,p, o) with a and

p as before and cr = t, i. The complex fields of (2a) are
replaced by two real fields with pl replacing Re& and p~
replacing Imp. Complex operators in (2b) are written as
2 x 2 matrices acting on the spin components of the fields
according to the prescription

A = rp x I (ReA ) —i r2 x I (ImA ), (3)

where ri, j =1,2, 3, are the Pauli matrices and r0 is the
2 x 2 identity matrix and 1 is the 2n x 2n identity matrix;
the multiplication signs indicate Kronecker products. In
this way the action (2b) is faithfully transcribed into a
4n x4n real representation. For future reference we note
that general 4n&4n real matrices may be rewritten as
2n x 2n quaternion matrices and that quaternions having
only r0 and r2 components represent complex quantities.

The standard construction of a field theory in
which the Anderson transition can be treated by use of
renormalization-group methods proceeds by the intro-
duction of matrix fields which decouple the quartic term
in the action:

2 f r

exp ~ + y „dr [(Dp) TSDp] ' = [dQ]exp —„dr [ 2 Tr(Q ) —
yp S ' DQDS '

j
(4)

where the functional integral extends formally over the
space of real 4n x 4n symmetric matrices. S is a diagonal
matrix having s along the diagonal. At this stage it is
also convenient to carry out a gauge transformation to
eliminate the convective term from the quadratic part of
the action.

The p integration can now be done yielding a field

theory of interacting matrices having the action

with

B.tip. (k)

(6a)

8 [Q) =const+ —„B,&», (k )BQ,&(k ) 6'Q», ( —k ),a

& [Ql =—
J dr TrQ + —,

' trlnC[Q], (sa)

2

=6..h&Ii
— G..(q+ —,

' k) G&z (q —k/2) (6b)
2 q

where

C[Q] =E I+c V 1 —rIS —yDQD (Sb)

and "tr" indicates a trace over both replica and spatial
coordinates. The two-particle Green's function is an
average of a quadratic form in Q weighted by exp[ —A).

To obtain a tractable field theory the action (5) is ex-
panded about a saddle point to second order in the fluc-
tuations. The saddle point, Qp, can be chosen diagonal
in all replica indices and uniform in space, Qp= Sqp.
Expanded to second order about Qp the action takes the (7)

where f =fdq/(2'), SQ =Q —
Qp, and G—:DC

x[Q ]D.
The coefficient B, defined in (6b), is expanded in

powers of k with k-independent terms defining the
masses of the Q fields. The Q+~ and Q ——fields have a
mass which is finite even when the symmetry-breaking
u. V term vanishes. This mass suppresses "longitudinal"
fluctuations and to leading order in a cumulant expan-
sion, ' the Qii and Q —— mass terms can be replaced
by the constraint that Q has "transverse" fluctuations
only,

Q(r) =U(r)QpU (r),
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where U(r) =S't T(r)S 't and T(r) e O(2m, 2m) for
each r.

In the quaternion representation, where Q=(1/
J2)g zj gj., the g~, g + fields have massless zii and

i2 components while their ri and r3 components have
masses proportional to (u/c ) for small u/c. The
coeScient of the k term in B defines the universe cou-
pling constant. After normalizing the fluctuating fields,

Q=SQ/qo, and retaining terms to order k and Q2 we

obtain the effective action,

t =4E 2y2/c 2

g/2t =2u qo/dc,

(9a)

(9b)

where qo = ynSdE /4(2tzc)
An anisotropic nonlinear sigma model is obtained by

elimination of the g++ and g — fields by use of the
constraint (7). We have carried out a momentum-shell
renormalization-group' ' (RG) analysis of this model
and, for n =0, obtain the following flows:

dt/dlnL = —ct+t /[8tr(1+g)]+O(t ),

dg/d lnL =2g+O(t ),

(loa)

(lob)

where tt/L is the rescaled momentum cutofl of the
theory.

For d & 2 there is a single nontrivial fixed point at
t =0 and the RG flows near the fixed point are
unaftected by the velocity field in agreement with the ex-
act one-dimensional results of Condat, Kirkpatrick, and
Cohen.

For d ~ 2 there are two nontrivial fixed points: (I)
g=0, t, =8trc, and (2) g=~, t, =O(c't ). The g=0
fixed point is clearly identified as the orthogonal fixed
point. The g=~ fixed point is identified by considera-
tion of the quaternion representation of the g fields.
When g ~, fluctuations of g' and g are completely
suppressed. The fluctuating g fields are thus restricted

A[g) = J dr Tr[VQ VQ+g(Q —Qz2Qz2)], (8)
2t

subject to the constant (7). Note that —,
' Tr(Q

—Qz2Qz2) =Tr[(g')'+(g')']. Thus the mass term
couples only to the ri and i3 quaternion components of
Q. Higher powers of V and Q are omitted from (8) and

presumed to be irrelevant.
The coefficient in (8) of the massless g and g fields

is the inverse of the sum of ladder diagrams in a peturba-
tive calculation of the two-particle Green's function.
The coefficient of the massive g' and g fields is the in-

verse of the sum of maximally crossed diagrams. Thus
the mass term corresponds to the cutoA, due to time-
reversal symmetry breaking, in the k 0 divergence of
the maximally crossed diagrams.

The mass and coupling constant of the action (8) may
be calculated explicitly from (6b) when u/c and

y(E/c) t are small,

g(t, g) =g(t, O)F(g(t, 0)'g), (12a)

where g(t, O) =exp(8tr/t) is the orthogonal localization
length and the crossover function F is given by

F(x) = 1+x/2+O(x'). (12b)

For g(t, 0) g)& 1 the behavior of the localization
length is controlled by the unitary fixed point. The P
function for the unitary fixed point has been calculated
to order t by Hikami from which we obtain
g(t, g)&1) =e px[( 8tzt/)'].

For third sound propagating on a rough substrate,
both the weak [g(t, 0) »1] and strong [g(t, 0) = 1] lo-
calization regimes are predicted to be experimentally
accessible in the absence of a flow. Superfluid films on
smooth substrates can sustain steady flow velocities of
order u =10 cm/sec and greater. If comparable veloci-
ties can be achieved on rough surfaces it will be possible
to study the unitary fixed point and the crossover from
the orthogonal to the unitary fixed point. Third-sound
experiments thus may provide an important test of as-
pects of localization theory which are dificult to observe
in electronic systems because of competing phenomena
such as electron-electron interactions, the quantum Hall
eAect, and the Kondo eAect.

In conclusion, we have studied the crossover from or-
thogonal to unitary localization and found that it is de-
scribed by an anisotropic nonlinear sigma model with a
mass term which couples to two of four quaternion com-
ponents of the matrix fields. We explicitly carried out
the calculation for the case of wave propagation in a
disordered medium in which a flow term breaks time-
reversal invariance. The method can be applied to other

to be complex matrices and the action is identical to that
obtained for systems without time-reversal invariance
starting with 2n complex fields. This action is U(n, n)
invariant and the g =~ fixed point is the unitary fixed
point.

For finite g, the renormalization-group flows describe
the crossover from orthogonal to unitary localization.
The crossover exponent near the orthogonal fixed point is

obtained from the eigenvalues of the RG flow linearized
about the orthogonal fixed point. In agreement with
Refs. 11—13 we find p= v[2+0(c )] where v= I/c is

the correlation-length exponent and, for example, p de-
scribes the crossover behavior of g, the localization
length

&(t,g) =at "F(glut')

Here At =
~
t —t, ~

and all lengths are measured in units
of the mean free path, lo~(c/E) +'y . For d =2, the
behavior of g for small t and g can be obtained by in-

tegration of the RG flow. The localization length is here
defined as the length scale L at which the coupling con-
stant is of order 1. Near the orthogonal fixed point (u/c
small) the result is
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models with time-reversal symmetry breaking such as
noninteracting electrons in a magnetic field. However, in

this case the mass term in the eAective action is more
complicated and it is not clear that it is renormaliz-
able 25

We propose that experiments be carried out in which
third sound is propagated on a rough substrate with a
uniform superfluid flow. In such experiments we expect
to see a dramatic increase in the localization length from

P —exp(Eo/E) to g —exp(Eo/E) as the velocity field is
turned on. This would be manifest as an increase in the
transmission of third sound across a system whose size is
of the order of the localization length without a velocity.
For small velocities we predict a scaling form for g and
have calculated the crossover function.
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