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Electrolytic Conduction in Porous Media with Charges
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The conductivity of a porous medium made of periodically arranged insulating cylinders with fixed
lattice charges is a nonlinear function of the water conductivity via a key dimensionless parameter g
which is a function of the surface counterion number density, the diffusion coefficient in the double layer,
the ion density far from the double layer, and the particle radius. When g&(1, one obtains commonly
employed empirical relations.

PACS numbers: 66. 10.Ed, 72.60.+g, 73.25.+i, 82.45.+z

Recently, there has been a great deal of interest in

electrical conduction in porous media saturated with
brine. ' It has been well known for over 25 years that
the composite conductivity o is a nonlinear function of
electrolyte conductivity o when the material contains
charged particles like clay particles. In this paper, using
a model of a double layer, we explain for the first time,
from first principles, this and other related experimental
facts which have been of great importance in geophysical
exploration. The results obtained here will be applic-
able to conduction in diverse kinds of porous media:
beds of ion-exchange resins, bones, suspension of biologi-
cal cells, and charged polystyrene balls, to name a few.

We show that the conductivity depends on a key di-
mensionless parameter j= 0+r+/Noa, that represents
the surface effects, where g is the surface ion number
density 0+ times the ratio r+ of average diffusion
coeScient in the double layer divided by that outside, di-
vided by the bulk ion density No far from the double lay-
er times the particle radius a. We will find below that o.

is a nonlinear function of g and hence of r„=cppNo.
Here p~ is the mobility of ions.

Conduction in a large class of porous sedimentary
rocks takes place through electrolytes which are present
in the pores of insulating rock grains. The clay particles
are ubiquitous and affect this conductivity because of ex-
cess counterions that balance the charge defects fixed in

their lattices. In the presence of water these counterions
form a cloud called the "double layer" around the clay
particle.

In order to understand conduction in porous media
with clays, consider a periodic array of charged cylinders
immersed in a simple electrolyte like NaCl solution. The
cylinders have immobile negative charges in the lattice
that are balanced by mobile counterions that reside in

the double layer with an effective surface ion number
density A+. We assume the Gouy-Chapman model
where the ion densities are given by N ~ =Noexp( ~ +),
for positive and negative species with charges + e, and
No is the density of the positive and negative ions in the
bulk —far from the surface. Here we made the poten-
tials nondimensional by multiplying by e/k aT The.
charges and potentials fall off exponentially over the De-

V j~ =0.

Here, following Fixman, we define chemical potentials,

p+ =n +/N + + I/I (2)

The upper case denotes quantities prior to the applica-
tion of the external electric field; and the lower case, the
changes due to the external field.

Outside the double layer, the Debye shielding makes
+ exponentially small and N+- =No, and for thin double
layer 6 0 and we find

V @=0, V n~ =0, n+=n (3)

The Fixman boundary conditions, which relate quantities
just outside of the double layer, are obtained by our in-
tegrating the continuity Eq. (1) over the double layer
and making a physical approximation that the tangential
component of the gradient of the chemical potential is
independent of the distance from the particle surface.
For a cylinder of radius a, this gives

r)p+/r)r+(ft+r+/Noa )6 p+/60 =0. (4)

The above approximation has been justified by Chew
and can be shown to be an excellent one for the range of
g used here. For very high values of g this boundary
condition breaks down. In Eq. (4) 0 =0, and r+ is ob-
tained by the following averaging:

f N+(r)D+(r) dr
0+r+ = (s)

D+ (outside double layer)
'

Next we consider a square array of cylinders with a
cell size of a and the porosity p =1 —+a 2/az. We follow
Lord Rayleigh, and expand the potential and ion densi-

bye screening distance 6=(a„'kaT/2e No) ', where ka
is the Boltzmann constant, T is the temperature, and c'
is the real part of dc dielectric constant of the electrolyte.

The equations in the presence of the external field are
linearized with respect to the applied electric field E,„
and the currents are given as

j+ = —N+D+Vu+
= —D ~(Vn w + N wVy~ n wVO),
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ties around a single cylinder as follows:

y=Ap+ g (A„r"+B„r ")cosn8, r & a+6,
n 1

(6)

n -i =Dp+ g (D„r"+E„r ")cosng, r & a+ 6. (7)
n 1

For each n we have four unknowns A„,B„,D„,E„. For a
periodic system, all the coeScients are identical from cell
to cell. The solutions which grow with r around one
cylinder are equal to the sum of decaying solutions from
all other cylinders, and this gives two sets of relations
among the unknown coeScients. The other two sets of
relations follow from Eq. (4).

The conductivity is computed by Rayleigh's tech-
nique which uses Green's theorem fds (UBy/Bn
—yBU/Bn) =0, where U=rcosO. Choose the contour
of integration over ds as the perimeter of the unit cell
and a circle of radius a+ 6+0+. In this region, U and y
both satisfy Laplace's equation (3). Over those sides of
the cell which are parallel to the external field H, By/Bn
and BU/Bn both vanish. Over the other sides which are
perpendicular to the field H, By/Bn is proportional to the
current entering and leaving the cell but y divers by the
voltage drop Ha across the cell. Thus we obtain a rela-
tion between current and voltage, i.e., the conductivity in

terms of the remaining integral over the circle. Over the
circle, U =acosO and BU/Bn = —cos8 so that only terms
of y which are proportional to cosO survive in the in-

tegral to give

o =o„(1—2rrB~/a H). (8)

It is tedious but straightforward to solve the above
equations. O' Brien and Perrins have numerically solved

similar equations with similar boundary conditions for
fixed porosity and for a limited range of other parame-
ters. Their main goal was to study conductivity as a
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FIG. l. Effective conductivity as a function of dimensionless
scaling variable g for p =0.22.

function of surface (zeta) potential. The work on
dielectric constant of dilute suspensions (which amounts
to solving the above equations for a single particle) con-
tains implicitly the dc conductivity but this was not in-
vestigated since the main goal there was to explain the
dielectric enhancement. The previous studies did not ex-
plore the conductivity problem in the context of the
well-known empirical laws and several other experimen-
tal facts, ' ' which is our goal here.

To keep terms beyond n = 3 requires numerical
methods, but all the relevant results are obtained by
keeping terms up to n =3, which we can solve analytical-
ly to find

o/o„= 1 + (I/F —1)O (g, y), (9)

G(g, y) = (I+3()+(1—p)(1 —g)(1+3()(S2/rr)+(I —p) ( —6g +g —3)S4/rr

(1+&)(1+3()+ (1 —y) (1 —&) (1+3g) (S2/rr) + (1 —y) '( —9( + 12(—3)S.'/rr'
Here, Snare lattice-structure factors, and Rayleigh gave their values as S2=z, S4=z x0.03235, etc. , and F is the
formation factor in absence of charge, given by Eq. (10) below. In the limit of uncharged particles (=0, Eq. (9) be-
cornes

o'(g =0)/o'„—= 1/F =1 —2(1 —y)/[I + (1 —P)S2/rr —3(1 —P) S4/rr ] (10)

Equation (9) shows clearly that cr is a nonlinear func-
tion of g and hence of o . This is illustrated in Fig. l.
Nonlinearity is due to the fact that the conduction paths
are not simply two resistors (bulk and double layer) in

parallel as assumed in Refs. 2. Because of bending of
electric field lines the geometrical factors affecting the
double layer region are difterent from those in bulk and
instead of a simple volume average of bulk conductivity
and double layer conductivity, we obtain a more compli-
cated formula, These geometrical factors are inter-

!
twined with g in Eq. (9).

We can demonstrate that the nonlinear behavior is
due, in part, to bending of the electric fields " by a
simpler model of a periodic array of uncharged insulat-
ing spheres coated with a conducting layer, and with
brine-saturated pores and no diAusion current. This has
been demonstrated both by a numerical simulation" and
analytically by extending Rayleigh's method for coated
spheres. As elementary as this may seem, this simple
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o =(1/F)[ r„c+(F f)g(t—t;„n~/a)l, (12)

where

pin
—r+9 E.

Equation (12) has a form similar to those obtained
empirically. In order to make comparison with empiri-
cal relations, we rewrite (12) in terms of Q, , which is

the counterion concentration per unit pore volume

Q„, =2n+(I —
tt )/an't:

~ = (I/F) (~„+~Q,, ).

Thus we find a theoretical justification for the empirical
relations in the high-salinity range suggesting parallel
conduction. But now there are additional geometrical
factors which multiply the p;„Q,, term.

The additional geometrical factors contained in 2 can
explain several other empirical observations. First, for a
reasonable value of tt = 0.2, Eq. (12) gives the effective
counterion mobility 8 = p~/4 = 4 (S/m) (liter/mole).
This value is not far from the value of coefticient multi-

plying Q„, as deduced by Waxman and Smits in this re-

gime, albeit for real rocks. Second, note that the zero of
this linearized Eq. (12) occurs at C„=—o„—AQ„„
which depends not only on Q„, but also on geometrical
factors in A. This explains the scatter observed in C~ vs

Q, , plots where different core samples having dift'erent

porosities and geometries were used in the same plot.
Also, the dependence on r+ is in qualitative accord with
experimental data ' where exchanging the counterion
Na+ with less mobile ions such as Ca++ reduced the
conductivity.

In conclusion, we have explained the nonlinear depen-

demonstration was given only recently.
Linear behavior of cr vs cr„results when (« l. At

high salinity No)) 1 or low surface ion density, or low
ionic mobility at the surface, r+ « I, the key parameter
becomes small, g « 1. Expanding G to first order in g we
find

1+11(1—
tt ) 'S,'/~'

G 1
—j I+ ( I

—y)S,/~ —3 (I —y) 'S42/~'

=1 —gj,
i.e. , G = 1

—gg. Thus the geometrical term and charge
terms, which are intertwined in general, factor for small

g and Eq. (9) simplifies to

dence of o. vs o.„as well as the empirical linear relations
at high o.„. Our theory is for a two-dimensional periodic
array and therefore cannot be used directly on experi-
mental data on real rocks. However, our model gives us

enough insight to propose that a correct formulation of
the problem should entail the correct scaling variable g.
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D. Johnson, A. Sibbit, and S. Whittingham for useful

discussions.
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