
VOLUME 58, NUMBER 8 PHYSICAL REVIEW LETTERS 23 FEBRUARY 1987

Conformal Invariance and the Spectrum of the 4'AX Chain
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Numerical solutions of the Bethe-Ansatz equations for the eigenenergies of the AAZ Hamiltonian on

very large chains are used to identify, via conformal invariance, the scaling dimensions of various two-
dimensional models. With periodic boundary conditions, eight-vertex and Gaussian model operators are
found. The scaling dimensions of the Ashkin-Teller and Potts models are obtained by the exact relating
of eigenstates of their quantum Hamiltonians to those of the XAZ chain with modified boundary condi-
tions. The irrelevant operators governing the dominant finite-size corrections are also identified.
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Two ideas unify the theory of critical phenomena in

two dimensions. These are conformal invariance' and
the notion that there exist general models to which
specific models of physical interest can be related by ap-
propriate transformations. Examples of such "central
theories" are the Coulomb (lattice) gas and the gen-
eralized Gaussian model. While analysis of these
generalized models can yield detailed information on the
critical behavior of the related physical models, including
critical exponents, the possible universality classes are
not predicted by this formalism.

The universality classes of two-dimensional [or equiv-
alently (1+1)-dimensional] theories are constrained,
however, by conformal invariance. ' Within conformal
theory, these classes are characterized by a single dimen-
sionless number c, the central charge or conformal
anomaly of the associated Virasoro algebra, the irreduc-
ible representations of which determine the operator
algebra describing the critical behavior. If c is less than
unity, unitarity restricts e to the values c =1
—6/m(m+1), m =3,4, 5. . . . For such theories, which
include the Ising (c = —,

' ) and three-state Potts (c = —', )
models amongst others, the operator algebra is finite; the
anomalous dimensions being given by the Kac formula.
The limiting value c =1 is of particular interest. This
class includes the four-state Potts model and models'
such as the eight-vertex and Askin-Teller models exhibit-
ing continuously varying exponents.

In this Letter, we identify the possible operators of
c =1 theories from a study of the spectrum of the one-
dimensional quantum A'XZ model:

L

Hxxz . g (crt tT +i+et tTi+&+~tT tTf+i).
2z sill y,.

Here cY", (T~, a' are Pauli matrices and d = —cos y,

y C [O, tr]. In the bulk limit, L ~, this Hamiltonian is

massless with critical exponents varying continuously
with A. ' The prefactor in (1) is included to ensure that
the resulting equations of motion are conformally invari-

ant. ' ' Its precise value can be inferred ' from the
known ' energy-momentum dispersion relation. The
value of the conformal anomaly follows' from the be-
havior of the ground-state energy Eo(d, , L) for periodic
boundary conditions as L ~. Analytical' and nu-

merical results ' yield

E (h, L)/L =e —tt/6L +o(L ), (2)

confirming ' c = 1.
The major advantage of the A'A'Z model over other

possible Hamiltonians with e =1 is that its spectrum on a
finite lattice can be calculated by the Bethe Ansatz. The
Bethe-Ansatz solution of the infinite AXZ chain is well

known. ' ' Surprisingly, the method has received rela-
tively little attention as a numerical procedure for com-
putation of the spectra of finite chains. ' ' We have
found ' that numerical solution of Bethe-Ansatz equa-
tions is feasible for quite large lattices up to L —512 not
only for the ground state' ' but also for various excited
states. In addition, the method can be extended to
yield eigenvalues of (1) subject to the generalized bound-

ary condition

crL+& —tcsE+& =e (crt —ter]). est. +i ctf (3)

n, n'=0, 1, . . . ,

P„, =2tr(s+ n —n ')/L, n, n
' =0, 1, .

(4a)

(4b)

where p is an arbitrary angle. For all p, H can be
block-diagonalized into disjoint sectors labeled by
n =go'/2.

Our subsequent analysis and identification of critical
operators rely on the predictions ' ' of conformal invari-
ance concerning the spectrum of a critical quantum
Hamiltonian in a finite strip. The key results can be
summarized as follows: To each primary operator 6,
with scaling dimension x and spin s, in the operator alge-
bra there exists a set of states in the quantum Hamiltoni-
an. For a chain with periodic boundary conditions, the
energy and momentum of these states are given by

E„„(L) = E (L ) + 2tr(x+ n+ n ')L '+ o (L '),
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respectively. From these relations and our eigenvalue
data we are able to estimate with very high precision
various anomalous dimensions for any coupling. Typical
estimates of several anomalous dimensions are shown for

y =z/6 (5= —J3/2) in Table I. Similar accuracy is

possible for other values of y except near y=0, where it
is necessary to extend the calculations to larger lattices
because of the slower convergence with L.

Let us discuss initially our findings for even L and
periodic boundary conditions (p =0). The lowest-energy
state in each sector yields, through (4), a set of operators
O„p with scaling dimensions x„p =n xp where xp =(rr
—y)/2v. The operators Gt p and 02p correspond to the
polarization and energy operators of the eight-vertex
model. This identification of O~ p confirms that made
from an analytical treatment ' of the Bethe-A nsatz
equations. We have also obtained the lower levels in the
conformal blocks associated with these operators, in ac-
cord with (4). Stringlike solutions of the Bethe-Ansarz
equations yield excited states corresponding to further
operators O„with dimensions

=n xp+m /4xp, n, m =0, 1,2, (5)

These operators are the analogs of the Gaussian-model
operators composed of a spin-wave excitation of index
n and a "vortex" excitation of vorticity m. Hence, we
can identify the operator Op ~ as the crossover operator
of the eight-vertex model or equivalently the energy
operator of the Ashkin-Teller model. The operator Op 2

is irrelevant for y& 0 but becomes marginal at @=0. As
we shall see, this operator is the main determinant of
finite-size corrections for both the AAZ and Ashkin-
Teller models as well as for the logarithmic corrections
that appear in the four-state Potts model. Finally, the
spectrum contains a state which gives x =2 for all y.
The associated operator is thus marginal corresponding
to the four-spin coupling of the eight-vertex model. Its
presence in c =1 theories results in the appearance of a
line of critical points, the operator itself governing
motion along the critical line.

The identification of Op ~ as the Ashkin-Teller energy
operator can be confirmed directly since it is possible to
derive the eigenvalues of the critical quantum Ashkin-

Teller model with four-spin coupling k on an M-site
chain exactly from those of a 2M-site A'XZ chain with
5 = —k subject to (3) for particular values of p. High-
precision estimates of the anomalous dimensions of the
Ashkin-Teller model then follow from (4). In addition
to identifying xp &, we find that the difference in

ground-state energy for p =z and p =0 gives the mass-

gap amplitude corresponding to the Ashkin-Teller polar-
ization operator with dimension xp tgq, the indices in (5)
being extended to fractional values. Similarly, we are
able to locate all of the parafermions present in the
Ashkin- Teller model. Our numerical results suggest that
the dimension of the spin- 4 parafermion is x~ ~/4, which
clarifies previous results.

To obtain the order and disorder operators of the
Ashkin-Teller model it is necessary to apply the bound-
ary condition, crL+t =crt, crg+t = —crf, crL+t =at', to the
XA'Z chain. The "magnetic" [Z(2)-charged] sector of
the Ashkin-Teller model is then located in the ground-
state sector of the XXZ model. While the Bethe-Ansatz
is no longer applicable, the required eigenvalues can be
computed easily by the Lanczos method for chains up to
L =20. Extrapolation of the resulting gaps gives, for all

y, the values 8 and 8 for the dimensions of the magnet-
ic order and spin- —,

' parafermion operators of the
Ashkin- Teller model, respectively.

The generalized boundary conditions (3) are also of
interest because they connect the A'XZ model to the q-
state Potts model. Specifically, the eigenvalues in the
ground-state sector of the quantum Hamiltonian of the
critical q-state Potts model on a lattice of M sites can be
related exactly to eigenvalues of a 2M-site XXZ chain
with 6= —cosy= —

—,
' Jq and p =2@. For +~0, (2) is

no longer valid. The coefficient of the L term be-
comes —xc(p)/6, where our results strongly suggest that
c(v') = I 12xp &/2 . Setting p =2y reproduces the value
of the conformal anomaly of the Potts model, ' name-
ly, c(q) = I —6y /z(rr —y). New higher-energy states
also appear in the XXZ spectrum corresponding to (new)
Potts operators. In particular, the Potts energy operator
(dimension x, ) is associated with a string state in the
ground-state sector of the ALZ model. Similarly, the
eigenstates of the Potts Hamiltonian associated with the

TABLE I. Finite-lattice estimates of anomalous dimensions of the XXZ chain for y=z/6,
5 2 2

xp l2 xn, m n xp + m /4xp.

(0, —,') (1,0) (0, 1) Marginal

8
16
32
64

128
256
-&n, m

0. 155 19
0. 152 17
0.151 04
0. 150 55
0. 150 30
0. 150 17
0. 15

0.397 93
0.405 94
0.410 63
0.413 27
0.414 74
0.415 57
0.416

0.436 06
0.444 60
0.448 97
0.451 28
0.452 54
0.453 24
0.454 16

0.4791
0.5074
0.5289
0.5453
0.5579
0.5677
0.6

1.5699
1.7522
1.8538
1.9126
1.9477
1.9690
2.0

772
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order and spin-1/q parafermion operators (dimensions x
and xzr) can be obtained from the XXZ Hamiltonian by
application of (3) with p=z and p =2m/q, respectively.
As a result, we are able to compute eigenenergies of the
Potts Hamiltonian on very large lattices for any q. In
contrast, conventional finite lattice calculations are re-
stricted to M ~ 10. Table II lists the resulting estimates
of x„x, and xpf for q =4. Cardy has recently shown
that these estimates should converge as I/InM. Allowing
for such a convergence rate yields the "extrapolated"
values quoted in Table II. These are in excellent agree-
ment with the expected results. More generally, for ar-
bitrary q =4cos y, our numerical estimates are in full

agreement with the expressions

x, =(z+2y)/2(x —y),

x =(~' —4y')/8z(~ —y),

xpr = (n —y)/2'+ (rc' —
q 'y') (n —y),

lations and the identifications made by Dotsenko.
We have also investigated numerically the corrections

to (4a). These corrections arise ' since a lattice Hamil-
tonian such as (I) deviates froin the conformally invari-
ant Hamiltonian 0* of the continuum theory by terms
involving irrelevant operators, i.e. ,

H =H" + g a~0~+. . . ,
j=l

(6)

where az are coupling constants. Among these operators
are those associated with the conformal block of the
identity operator OI, the leading operator of which has
dimension xI =4. For the periodic case (p=O), our nu-
merical results indicate that the dominant correction
terms in (4a) can be accounted for by considering in ad-
dition to Oq the operator Op 2, with scaling dimension
x =xo 2

= 2m/(7c y). It is, however, necessary to go
beyond the first-order perturbation calculation of the
corrections performed by Cardy. ' More generally, we
obtain for the eigenenergy, F.„,associated with di-
mension x„,the expansion

~n, m —2= e +2+L x„I L
—k (x —2) 2J—

12 k=o(=o
(a, I)~(o,o)

where e is the ground-state energy per particle of the
infinite lattice and the periodic ground state corresponds
to (n, m) =(0,0) and xpo=O. The coefficients al„l de-
pend ' on the couplings a; and the operator-product
expansion coefficients c; j ~. In particular, ei o depends
linearly on c„„-p2. In the Gaussian model, this
coefficient vanishes unless (n, m) =(0, 1). It appears that
this selection rule remains true for the AA'Z chain.
Specifically, we find that the corrections to the amplitude
corresponding to the energy operator of the Ashkin-
Teller model, the operator Go ~

in the AAZ model, are of
the form L (boL "~ " +b iL ) while for all
the other operators leading corrections are L (bo
XL '"' "+b,L '). In this case the dominant
correction term switches at y=z/3 which accounts for

! the behavior found by Hamer. ' At y=z/3, the leading
correction is O((lnL)/L ). It is also interesting to ob-
serve that as y 0, x02 2 and more powers in (7)
corresponding to higher values of k become important.
This gives a simple visualization of the reason for the
poor convergence rate observed in finite lattice calcula-
tions around the four-state Potts point (y=O). Strictly
at y=0 the number of equally important corrections
tends to infinity and the original couping constants in (6)
renormalize giving rise to the logarithmic corrections.

We have analyzed the correction terms for the gen-
eralized boundary conditions. In particular, for the Potts
model with q & 2, the leading corrections for the energy

I

and order-parameter amplitudes are of order I.

TABLE II. Estimates of anomalous dimensions of the four-state Potts model.

4
8

16
32
64

128
256
512

Extrapolated
Exact

0.771 229
0.722 621
0.684 992
0.657 247
0.636 473
0.620 490
0.607 858
0.597 638

0.501 + 0.002
0.5

0.143 407
0.139 056
0.136 751
0.135 233
0.134 106
0.133 217
0.132 493

0. 126 ~ 0.002
0.125

Xpf

0.459 772
0.474 226
0.483 573
0.490 105
0.494 965
0.498 747
0.501 786

0.529+ 0.003
0.531 25
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where x'=2(z+ y)/(zr —y). This value is precisely that
of the second thermal exponent of the Potts model.
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