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Nonexistence of Small-Amplitude Breather Solutions in p" Theory
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For the (1+1)-dimensional Klein-Gordon equation called the p model, there is a known asymptotic
series formally representing a "breather" (a real-valued solution that is localized in space and periodic in

time) in the limit of small amplitude and frequency just below that of spatially uniform infinitesimal os-
cillations. We show that even though this expansion is valid to all orders, p theory admits no true
breathers in this limit. Instead, what appear in many physical contexts are approximate breathers that
slowly radiate their energy to x = + ~. We calculate this radiation rate, which lies beyond all orders in

the asymptotic expansion.

PACS numbers: 03.50.—z, 02.30.+g, 42.65.Bp, 63.10.+a

Nonlinear Klein-Gordon equations in one space di-
mension,

u„=u„g(u ), —

where g(0) =0, g'(0) & 0, arise in several physical con-
texts' ranging from magnetic chains and uniaxial fer-
roelectrics through nonlinear optics to quantum field
theory. One much studied example is the sine-Gordon
equation, in which g(u) =sinu. This equation admits ex-
act solutions called breathers that are localized in space
and periodic in time:

u(x, i) =pa„(x)exp(inrat),

where

(2)

a „(x)=a„*(x),

($2+ n 2ca2 2)a

(3)

asymptotic expansion formally representing such solu-

tions, ' and by numerical evidence f rom a spatially
discrete p model. Any smooth, real-valued solution of
(1) that is periodic in time with frequency ra & 0 has a

Fourier representation

u =4 tan 'I(ca —1) ' sech(1 —ca ) ' x sincat1. 3+~aman —m + Xk Zmakam Qn —k —m. (4)

Breathers are important in physical applications, ' and
the question of whether other Klein-Gordon equations
admit breathers is an important unsolved problem.

Another common model is

tt Mxx 2u+ 3u u

With u =&+1, (1) is called the p model, after the quar-
tic term in its Lagrangean density. The possibility that
(1) might admit breathers was suggested both by an

The question is, do cu and {a„(x)I exist satisfying (3)
and (4) such that a„O as x + ~ and the series in

(2) converges?
Spatially uniform infinitesimal solutions of (1) oscil-

late with frequency J2, and (1) admits no breathers with

ra& J2. For 0 & cu & J2, simple analysis indicates that
the boundary conditions (a„O as x + ~) over-
determine the problem, so that nontrivial breathers are
un l ikely.
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a~exp( —X) -- C, a„-- 0, n~ 1. (5a)

Define c: =(2 —ar ) 'r for ar & J2. The asymptotic
expansion' may be obtained by the assumption of both
0 & c « I and small amplitudes (c =0 will be treated sep-
arately). We will show that (4) has no smooth, spatially
localized solutions in this limit. Therefore the asymptot-
ic expansion represents no true breathers in the p mod-
el, although it represents approximate breathers to all or-
ders.

In this limit, examination of (4) as .x — —~ [where
the a„(.~. ) vanish] shows that X:=cx is the natural spa-
tial variable for any possible breather, and that a& is the
dominant Fourier mode. To show that no true breather
exists in this limit, we first drop some of the boundary
conditions to define a problem, the unique solution of
which must be the breather if one exists. To this end,
use (3) to define a„ f'or n & 0. For n ~ 0, use boundary
conditions as A—

Changes of amplitude and phase of the arbitrary corn-
plex parameter C correspond respectively to x and t tran-
sitions in solutions of (I). One more condition must be
imposed to assure that ap remains O(c) globally; say,

lapl ~ 2', «raIIX. (sb)

Formally, (5) provides enough conditions to make a solu-
tion of (4) unique. If (4) and (5) have no solution, then
certainly no breather exists in the limit in question.
From here on we assume that for small enough ~ & 0,
(4) and (5) have a unique solution, which we denote by
{a„(X;c)};we assume that it is analytic in X. (Boundary
conditions also dictate uniqueness if a=0. But at c=O
there is no scale, so that no solution can be small. )

Using established methods, ' one can show that
{a„(X;c)}has an asymptotic expansion to all orders in

powers of c for which, if C in (5a) is chosen properly, the
dependence occurs only through positive integer

powers ot S:=csechcX. The first few terms are

a, (X;c)——,
' (I+ —'„' c')S' ——",„' S'+O(c'),

a„(X;c)—( —S/246) "[—2 —49nc /18+(85n/36+ —,
' )S +O(c )], n & 0.

(6)

This expansion is valid for A ~ R, for any fixed large R.
If {a„(X;c)}actually is a breather, then its spatial

reflection is also a breather with the same e and satisfy-
ing the same boundary conditions except for spatial
translation. Therefore, it must be spatially symmetric
about some appropriate point. We will demonstrate
nonexistence of' the putative breathers by calculating the
;rsymmetry of {a„(X;c)}.

It follows from the asymptotic series (6) that for every
nr)~a„p —

, 0 to all orders. Thus {a„(X;c)}is spatially
symmetric to all orders, so that any asymmetry must lie
beyond all orders in the asymptotic expansion. Because
asymptotic series typically diverge, to go beyond all or-
ders is usually meaningless. However, the asymptotic
series for each rl~a„p conr erges (trivially, because each
term v;rnishes), so that we may ask for transcendentally
small corrections to these series. An essential observa-
tion in our method is that it is possible to go beyond all
order» in an asymptotic expansion that happens to con-

! {a„(X;c)}and its asymptotic representation (6). We as-
surne that (4) and (5) have a unique solution, and that
the expansion (6) remains asymptotic to it, for X ~ 0 ex-
cept near singularities such as X= birr/2, where the
series ceases to be asymptotic because S

l

-- ~. Be-
cause to all orders the expansion involves only integer
powers of S, both Im(a„) and Re(r)~a„) vanish to all or-
ders in c along the imaginary X axis between birr/2
Therefore information beyond all orders is available all

along this line segment.
A second essential observation in our approach is that

near, & singularity like X=irr/2, where the series loses
a»ymptoticity, one may hope to find an effect that lies

beyond all orders on the real axis. To do so, we employ
matched asymptotic expansions in the complex
plane. "

Define new variables in this "linear region":

(7)X :irr/2+ c=y, a„(X;c)=:A„(y;c),verge.
Analytically continue into the comPlex X Pl,me both and expand these functions in their own c expansions.

At leading order, the governing equations become

(r)r, + 2n —'2) A„+3P,4 4„— —gq g Ar, .A A„r, =0. (8

Matching of the inner and outer expansions in an appropriate overlap region, such as {cy—0,—
rr =-,rrg(r ) ~ —rr/2}, yields

Ap(r ) —
—,
'

r —",
~~ y +O(y ), A„(r ) —cr" [ —2 —(85n/36+ —,

' ) v +O(y )], n & 0,

ly I

--- -,

v here a". =(2i J6r ) '. Equations (8) and (9) are c independent.
To make (8) well posed, impose (9) as boundary conditions as Re(y) —~, along with two conditions on

Re(r ) =0:

Im(gp) =0, Re(r), , hp) =0. (IO)
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It is sufhcient to impose these conditions on any line,
Im(y) =const, that lies below (i.e. , closer to the real X
axis than) any singularities of the solution of (8). The
unique solution of (8)-(10) must satisfy (9) not only as
Re(y) —~, but also as Im(y) —~, or any com-
bination thereof.

Let A„(y) =:8„+iC„N.ote from the infinite series
indicated by (9) that the imaginary parts C„vanish to
all orders as Im(y) —~ along Re(y) =0. Taking the
imaginary part of (8) there, one obtains equations for
the C„, with coefficients involving the B„. Because each
C„ is (transcendentally) small, we can linearize these
equations to a good approximation. At lowest order (as

! y! ), these homogeneous linear equations decou-
ple, and the mth equation has two independent solutions
for C . The equations are coupled at higher order (as

! y! ~), so that C induces contributions in all the

other C„. For m ~ 2

C —v exp[ —i (2m ' —2y) 't'],

6nC„—
(

cr "C, 0 ~n&m,

n —mC
(2m+ I ) (m+1)

where v is an arbitrary real constant; the other solution
Iexp[i(2m —2y) 't ]} has been omitted because it grows
as Im(y) —~, so that it violates (9). For m =0, Co
is a linear combination of exp(~ J2y) at leading order;
neither solution vanishes as Im(y) —~, and so both
are excluded by (9). For m = I, the solutions are alge-
braic at leading order, and they are also excluded by the
matching condition (9).

Collecting terms for Im(y) —~, Re(y) =0, we ob-
tain

C2 —v2exp( —i J6y)[I+O(y ')]+(J6/10iy)v3exp( —4iy)+. . . (12)

Similar expressions exist for the other C„, n ~ I. If v2eO, then its term dominates as Im(y) —~ in (12) and in the
corresponding expressions for every n.

We have estimated v2 by integrating (8) numerically from Re(y) ~ —50 to Re(y) =0, along lines on which Im(y)
was held fixed, either at —5 or at —6. The equations for A„(n ~ 1) were solved as initial-value problems, with use of
three terms in the asymptotic series (9) as initial data, while the Ao equations were treated as two-point boundary-
value problems. We iterated back and forth between the two schemes (usually about a dozen times) until convergence
to ten significant figures was obtained. The result is vz=— —(4.5+ 1.0) x10 . The precise value of v2 is of secondary
importance, provided that it is not zero.

The last step is to continue (12) back along Re(X) =0 to X=0. Because the Im(a„) vanish to all orders along the
boundary X axis, they satisfy approximately linear equations, with solutions similar to those in (11). A similar analysis
here eventually yields results like

Im(a2) —Ki exp( —i J6X/c)+Kzexp(i J6X/c)+O(cKi, cK2),

where K] and K2 are free constants. K~ is obtained by
matching of (13) to (12) as X itt/2; K2 is obtained by
a similar matching as X —itt/2 The final result i.s
that on the real axis at A =0, as c 0,

lIxa2 —2 J6v2c 'exp( —tr J6/2c) (14)
(a2 is the most asymmetric Fourier mode as c 0). It
follows that (4) admits no X-symmetric solutions in the
limit c 0, and a fortiori that (1) admits no true
breathers in this limit. This is our main result.

Next, we compute the radiation rate for an approxi-
mate breather in this limit. For each small e, let
pb (x, t;c) denote the unique, periodic solution of (1)

!
whose Fourier coefficients satisfy (4) and (5); pb is

asymmetric. Let C&(x, t;c) denote a symmetric (about
x =0) solution of (1) with two properties as x
(i) &=tish to all orders in c; and (ii) & has no incoming
radiation. Then p, (x, t;c):=N —

pb is exponentially
small, so that it satisfies approximately the homogeneous
equation obtained by linearization of (I) about titb, with
a radiation condition as x —~ and a nonhomogene-
ous boundary condition (9 i', =r)„titb) at x =0. These
can be solved order by order in e. At leading order, be-
cause a2 is the most asymmetric Fourier coefficient, one

l finds

i'„(x, t;c) =4v2exp( —ttJ6/2c) [sin(&6x+2cot) + O(c)].
This is also the dominant behavior of &(x, t;c) as x —~, because pb vanishes there.

Because 8 N! o =0, conservation of energy yields

(15)

If Lc)) 1, the energy fiux at x = —L can be estimated from (15). The result is the leading-order approximation of the
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(time-averaged) radiation rate of an approximate
breather of small amplitude:

tl, (H/2) = —8 J3vzexp( —tr J6/2e) [1+0(e )]. (16)

One shows from this that as t —~, H —tr j6/2]nt.
In conclusion, we mention specifically two questions of

current interest in physics upon which these results shed
light. First, in applying (1) to problems in condensed
matter at finite temperature, one would expect to see
long-lived breatherlike objects along with radiation (pho-
nons) at the appropriate frequencies, predicted by (15)
and its generalizations. Second, the extremely slow de-
cay of these approximate breathers suggests that even

though these solutions are neither strictly periodic nor lo-

calized, they still may be relevant for determination of
the energy spectrum of the quantized lt theory, via an

approximate semiclassical quantization. "
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