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We consider the problem of discrimination among ensembles of images generated by distortions of a
prototype and the addition of noise. As the noise level is increased the discrimination task becomes qual-
itatively more difficult in that optimal discrimination requires the computation of increasingly longer-
ranged correlations or the solution of increasingly difficult optimization problems. These results suggest
the use of such image ensembles in probing the computational abilities of the human visual system, and
possible theoretical implications of such experiments are discussed.

PACS numbers: 87.30.Ew, 05.20.—y, 87.10.+e, 89.70.+c

A basic question about the central nervous system con-
cerns its capacity to solve problems of great computa-
tional complexity. There is at present substantial in-

terest in the connections between complexity theory and
statistical mechanics on the one hand, ' and between the
dynamics of various statistical systems and neural net-
works on the other. What is missing is some quantita-
tive or even qualitative characterization of the computa-
tional abilities of real nervous systems which could be
used as a guide in formulating theoretical issues.

To make progress we choose a very specific issue, the
question of local versus nonlocal computation in the visu-
al system. Most recent theoretical attempts to under-
stand'visual information processing have relied on the
"feature detector" ideas which originated in the physio-
logical experiments of the 1950's: Neurons in the visual
system are assumed to compute nonlinear functionals of
the image intensity which signal the presence of local
features in the image, converting a continuous pattern
into a set of discrete "feature tokens" which can be pro-
cessed by subsequent layers of neurons. An alternative
view is that of the Gestalt physchologists, who maintain
that the perceptual content of an image cannot be re-
duced to the sum of local features, particularly in view of
the fact that our perceptions are invariant under a very
large group of transformations.

There are some problems, such as the detection and
identification of small-amplitude movements, for which
local computations are not only a possible solution, but
in fact the optimal solution in a well-defined sense.
Here the structure of the optimal computation maps
cleanly onto the parallel architecture of the visual sys-
tem, and so it is (qualitatively) easy to understand how
the biological system achieves its impressive speed. If,
on the other hand, we have a problem whose solution re-
quires the computation of strongly nonlocal correlations

among the outputs of the photoreceptor array, then the
mapping of the problem onto the system architecture be-
comes nontrivial, and feature-detector neurons of the
usual type are rather useless.

Our goal in this Letter is to outline a strategy for con-
struction of nonlocal problems which exploits the estab-
lished invariances of our perceptions. The tasks we con-
sider involve discrimination among ensembles of images,
an idea which has its roots in Julesz s studies of discrim-
ination among stochastic "textures. " Statistical-
mechanics methods provide a powerful analytic approach
to an understanding of the kinds of computations that
are required for optimal discrimination among such en-
sembles. We emphasize that our goal is to use these
methods in the design of new experiments which can
probe the computational abilities of the visual system in

a theoretically well-motivated manner; it is not our in-
tention to present a theory of perception.

An image (or more precisely a picture) may be de-
scribed by a field tt(x), scalar for black-and-white pic-
tures and vector for color. Imagine starting with some
prototype image po(x), distorting this image, and adding
noise to obtain the image p(x) which the observer actu-
ally sees; distortions are summarized by another field
E(x). In the absence of noise there is some deterministic
procedure which allows us to apply a particular distor-
tion Z to the prototype &0 and obtain the image p. In the
presence of noise, p is only probabilistically related to a
distorted version of the prototype, and so we define some
probability distribution functional P(p(x)

~
po(x);X(x)].

To be precise we also asssume that the distortion is ran-
domly chosen from some known probability distribution
PLt'(x)] =expI —W[Z(x) l]. Then a single prototype im-

age &0(x) generates an ensemble of images defined by
the conditional probability of our observing a particular
P(x) given Po(x):

P[y(x)
~
yo(x)] = [Z [go(x)]] 'J DX(x)e ~'""P[y(x)

~
yo(x);X(x)].

The interesting and experimentally accessible quantities are the reliabilities with which two or more such ensembles
can be discriminated from one another. Optimal unbiased discrimination is accomplished by maximum likelihood: If
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we are forced to choose between prototypes pp(x) and p~(x), for example, we calculate

P[y(x) i yp(x)]Xyx =ln
P[y(x) ~ y((x)]

and guess that p(x) derived from pp(x) if X[&(x)] & 0 and conversely. The probability of correctly identifying the en-
semble generated by pp(x) is

P, leap(x) vs yi(x)] =„Dy(x)P(y(x) i |tp(x)]e [zip(x)]]. (3)

Here 6 denotes a step function. The difficulty of computing X[&(x)] and thus reaching optimal performance may be
studied by our taking Eq. (1) seriously as a statistical mechanics for the scalar field p(x). Thus we write

P[y(x)
~ yp(x)] = [Z[yp(x)]] 'exp[ —S,tr[y(x);yp(x)]],

and

Z[pp(x)] =e '" =J Dp(x)exp[ —S,p[p(x);pp(x)]], (5)

where the effective action S,~[&(x);pp(x)] is obtained by our integrating out the distortion field and the free energy
F[pp(x)] is defined in the usual way as a function of the external field Pp(x). We see that

k [p(x) ] =S,g[y(x);p( (x) ] S,p [y(x);Pp(x) ] +F[yp(x) ] —F [y( (x) ], (6)

so that the complexity of computing k[p(x)] is deter-
mined by the structure of the eflective action. If this ac-
tion is local in p(x) then for an image sampled at A'

points a serial computer can evaluate X[&(x)] in O(N)
computational steps, and we expect that the nervous sys-
tem can solve the problem with O(1) layer of neurons in
O(l) time step. Following the discussion above, any
task with such a local eAective action cannot be used to
look for computational abilities beyond those available in
conventional feature detectors.

A basic fact about human vision is that it admits, at
least approximately, a large group of invariances or
"perceptual constancies. " Thus we recognize triangles
as triangles despite changes in size, orientation, and posi-
tion in the visual field, we recognize colored objects
despite changes in the spectral content of the illumina-
tion, and so forth. Evidently certain distortions X(x) are
considered nearly as plausible as no distortion at all.

This presumably reAects the relative likelihood of such
distortions occurring in the natural environment, so that
if we want to simulate "natural" tasks we must choose a
weighting function W[X(x) ] which assigns minimal
~eight to distortions that respect the perceptual invari-
ances. To make things simpler we promote these ap-
proximate invariances of perception to exact symmetries
of our artificial ensembles. Space permits us to discuss
only one example; details and more examples are given
elsewhere. '

The geometric invariances of perception are perhaps
the most obvious. To a first approximation we can iden-
tify any rigid Euclidean transformation of an image, and
indeed these transformations are constantly occurring as
we move through the world. Geometric distortions of a
two-dimensional image are defined by the function y(x)
which maps points in one image to points in the other,
and if we add spatially white contrast noise we have

exp[S,tr[p(x);pp(x)]] = "Dy(x) exp —W[y(x)] — „d lpx( ) x—pp(y(x))] (7)

The weighting function W[y(x)l must be chosen so that the rigid translations, rotations, and dilations are given
minimal weight if we are to respect the Euclidean invariance of our perception, and if we promote this invariance to an
exact symmetry then W itself must be a scale-invariant scalar quantity. This symmetry of course provides severe con-
straints; the simplest allowed possibility is to write y(x) =x+8 (x), with the components A„=B„ri+e„.8„», and choose

W = —„d'x [(1/gj') rl(x) 8'q(x)+ (1/g2 )Z(x) O'X(x) ].
The functional integral in Eq. (7) can be viewed as a statistical-mechanics problem for the field y(x), for which

several approaches are possible. The first is perturbative, where we write

yp(y(x)) =yp(x+3(x)) —yp(x)+A„(x)r)„)p(x)+. . .

and perform a double expansion in A and Ap =p —
pp. Carrying through the algebra one finds a masslike term

1 d'x W„(x)W „(x)[8„yp(x)pl„yp(x) ]
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which regulates the infrared singularities of the free action W'[rl(x)g(x)] and thus must be included in the zero-order
action around which one does perturbation theory. To do this one replaces 8„&o(x)8„&p(x) 8„„pp/l, where pp and
l are typical values of p(x) and its logarithmic derivative, respectively. Although this seems like a drastic approxi-
mation, it captures the analytic structure introduced by the mass term and can be improved by a convergent perturba-
tion theory provided that the pp(x) is relatively smooth. In the opposite limit of a "bloblike" image we have an alterna-
tive approach, as described below.

Expansion in 2 is sensible only if typical values of 2 which enter the integration are smaller than I, and this allows us
to identify the perturbation parameter e=(g C/pol ) 'l, with g some combination of g~ 2. We find the leading nonlo-
cal contribution to the eAective action to be

2I 2

„d2x d2y[B„pp(x)B„pp(y)]A~(x)A~(y)e
—

I

—xI/&F(
I x y I/0)

where F is an oscillatory function and the correlation
length is (=s 'le. In this expression we assume that
g&/g2 is of order I; if we vary the coupling ratio over a
wide range we can achieve the same eA'ective correlation
length in many difIerent ways. We have analyzed
higher-order terms in the perturbation series' and find
that the qualitative long-distance behavior is unchanged,
although the correlation length acquires finite corrections
and there are terms in the eAective action involving mul-
tipoint correlations of d, p. Thus there exists a well-
defined limit, g 0 at fixed e, in which arbitrarily long-
ranged correlations make a finite contribution to the

! eflective action and thus must be computed if one is to
reach optimum discrimination performance. If we also
allow e to become of order 1 then arbitrarily many-point
nonlocal correlations become important in the computa-
tion of k[p(x)].

An alternative approach to evaluation of
S,&[p(x);pp(x) ] is in mean-field theory. This is

equivalent to our finding a particular distortion y(x)
which brings p(x) and pp(y(x) ) into correspondence—template matching —and which at the same time is
plausible as measured by W[y(x)]. In mean-field theory
we approximate

—5,"]i'[y(x);yp(x)] —~[y, (x)]+ J d'x[y(x) —yp(y, (x))]',

where y, (x) is the solution of the variational equation for stationary points of the exponent in Eq. (7). The difficulty in

computation of this approximation to S,p and hence k is generally dominated by the complexity in the solving of the
variational problem. While variational problems do not fit into the classification of local and nonlocal problems intro-
duced at the outset, the structure of the variational calculation confirms our conclusions about the inherent difficulty in
the solving of a nonlocal problem.

Suppose that p(x) is chosen out of the ensemble defined by pp(x), so that p(x) =pp(yp(x))+ ly(x), with yp(x) the
"correct" distortion and y some instance of the added noise. We need to compute objects like

E [y(x);yp(x) ] =„"d'xyp(y (x) )yp(yp(x) ),

and

6E [y(x)] =„d'x yo(y(x) )y(x).

For bloblike images of the form pp(x) =g 8(x —b ), with 8 a narrowly peaked function centered on the origin, each
of the terms F „ in the expansion

E[y(x);yp(x)] =gJ"d'xB(y(x) —b, )8(yp(x) —b ) =gE ly;yp]

vanishes unless y '(b„) =yp '(b ). Schematically we can write

E [y(x)'yo(x) ]—lo+8(y (bn) yo (bm )). (IO)

where 8 is some new sharply peaked (dimensionless)
function and lo is the blob width which must appear to
keep the dimensions right. In this approximation the
"potential" (2C) ' f d x [&(x) —po(y (x) )] depends
only on J ' at a discrete set of points corresponding to
the blob positions. This potential consists of a deter-
ministic piece which favors y being close to yo, with the
depth of this minimum of order of the number of blobs

!
N, and a fluctuating piece of order JN which arises
from coupling to y. There are "false minima" of the
deterministic potential at values of y which bring some
but not all of the blobs into correspondence, and there
are completely erroneous minima generated by the nosiy
background potential. These latter eff'ects can be calcu-
lated by well-known techniques for study of the extrema
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of random Gaussian fields, " here in 2N dimensions.
The result' is that erroneous minima of depth E» JN
occur with a probability density (at large N) P(E)
—E exp( —E /aN), where tz is a parameter propor-
tional to the noise level. This implies that typical errone-
ous minima of depth E*—N Ja and correspondingly the
barriers between false and true minima are of order N,
not ~N This . is similar to the structure found in the
"energy landscape" of NP-hard optimization problems
such as the traveling salesman, ' suggesting (although by
no means proving) that as the noise level a becomes
large this problem also becomes difficult.

We have given an example of a rather natural discrim-
ination task in which arbitrarily long-ranged and mul-
tipoint correlations must be computed if optimum perfor-
mance is to be reached at least in certain limits which
are controllable as the diA'erent image ensembles are
generated; this same structure is found in other tasks as
well. ' It is known that, in discrimination among
simpler image ensembles, human observers can approach
optimum performance in the sense defined here. ' This
suggests experiments in which the performance of hu-
mans is measured as a function of the parameters which
control the correlation lengths defined above: If the visu-
al system can only compute local functionals, as with
feature detectors, performance (percent correct discrim-
ination) should follow the optimum only for a restricted
range of correlation lengths and then fall away dramati-
cally. If, on the other hand, the system can adapt to
compute strongly nonlocal functions of image intensity
or solve hard optimization problems, no such abrupt drop
will be observed. These experiments will be difficult, but
they have the potential to provide serious challenges to
our understanding of computation in the nervous system.
As the reader may have guessed, our suspicion is that the
system can solve nonlocal problems, and that there are
interesting theoretical questions to be answered about
the algorithms and hardware responsible for such com-
putations. Suspicions aside, the approach described here
provides the tools for asking very definite questions about
the computational abilities of the brain.
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