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Quasicrystal Equilibrium State
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We obtain quasicrystalline structures in Monte Carlo simulations of a simple two-component Len-
nard-Jones system in two dimensions. The quasicrystal, which shows tenfold symmetry, appears to be an
equilibrium state of the system. Although the structure corresponds to tiling of the plane with rhom-

buses, it is not a Penrose pattern.

PACS numbers: 61.40.+b 61.50.Em, 64.70.Pf

Shechtman er al.! found that the diffraction patterns
of some rapidly quenched metal alloys consist of sharp
spots arranged with icosahedral symmetry. Their
discovery has forced physicists to reevaluate their tradi-
tional abhorrence? of the icosahedral symmetry group.
Although the mathematical prohibition against the com-
bination of icosahedral symmetry with translational
periodicity remains, it proves possible to replace periodi-
city with other types of translational order which allow
both sharp diffraction peaks and icosahedral symmetry.>
Abandoning spatial periodicity in well-ordered solids
questions a second assumption that all solid equilibrium
states must be periodic. *

The discovery of long-range icosahedral order in alloys
raises the possibility that the local energetic preference
for noncrystallographic symmetry could lead to a non-
periodic state with lower free energy than any crystalline
structure. If we could fill space with atoms in such a
manner that each atom were surrounded by an icosahe-
dron of other atoms, this structure would form the
ground state for a wide range of elements. However,
icosahedral frustration>® prohibits such a structure. We
can achieve this packing locally, but must include ener-
getically costly defects over larger length scales. An in-
terplay of energetic preferences, geometric constraints,
and entropy determines the true equilibrium states which
may or may not be periodic.

Experimental studies of quasicrystal formation have
not settled this issue. [Initially, quasicrystals were
formed by rapid quenching of a liquid alloy of aluminum
and manganese.! Slow cooling resulted in conventional
crystal formation, suggesting that quasicrystals are
metastable, or even unstable states. More recent studies
of annealing show that the quasicrystal phase of UPdSi
is more stable than the amorphous phase, but less stable
than conventional crystals.” In general, certain quasi-
crystal phases of ternary alloys containing small concen-
trations of silicon appear more stable than the corre-
sponding phases of binary alloys. Perhaps these alloys
are chemically ‘“close” to an equilibrium quasicrystal
phase which has not yet been discovered. Finally, large,
stalsale, single quasicrystals of AILiCu have been report-
ed.

Landau theories show that quasicrystals may form

equilibrium phases in two and three dimensions.® Unfor-
tunately, these theories provide no microscopic picture of
atoms arranged in space, and no direct connection be-
tween the phenomenological parameters of the Landau
free energy and microscopic forces. Numerical simula-
tions!® have confirmed the mechanical stability of
decorated Penrose patterns but have not been able to ob-
tain these configurations by cooling from the melt.

In this paper, we demonstrate that a simple, realistic,
two-component Lennard-Jones system in two dimensions
spontaneously forms a quasicrystal (Fig. 1). The quasi-
crystal is apparently an equilibrium state of the system.
We choose the parameters of our Lennard-Jones system
to encourage local decagonal order. At low tempera-
tures, this local order induces long-range decagonal
bond-orientational order without creating spatial periodi-
city. We also present a related, analytically tractable,
model which actually possesses quasicrystal equilibrium
and ground states.

These simulations also provide insight into the struc-
ture of quasicrystals. Our configurations show a more
general type of ordering than a Penrose pattern. The

FIG. 1. Low-temperature configuration of pure Lennard-
Jones system showing quasicrystal equilibrium state.
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Penrose-pattern inflation and deflation symmetries are
absent, but sharp diffraction peaks (possibly delta func-
tions) remain.'! Our equilibrium states are intermediate
in structure between a Penrose pattern and an orienta-
tionally ordered glass.'> We will follow the experimen-
talists’ terminology and call such structures quasicrystals
because they combine a high degree of spatial order with
noncrystallographic symmetry.

The form of the potential is

Vap(r) = Eagl(0aglr) 2 — 2(cag/r) ], (1)

where a =L or S denotes large or small atoms, ogp is the
bond length, and E.s the bond strength. We choose
bond lengths to promote local decagonal order:

O'LS=1.0, oLL=2sin36°=l.l76...,

055=2sin18°=0.618.... (2)

Note that our atoms are not well described by hard disks
because ors > (o7 +0s5)/2. Figure 2 shows a Penrose
pattern decorated with these atoms.

Our Monte Carlo simulations find quasicrystal equi-
librium states over a range of bond strengths. In order
to prevent phase separation into single-species triangular
lattices, we choose the interaction E;g between unlike
species to dominate the interactions E;; and Ess be-
tween like species. Figure 1 shows the result of a Monte
Carlo simulation in which we chose

Ers=1, Eyp=Ess=73, (3)

and cooled slowly from high to low temperatures. The
particles were initially placed at random in a large circu-
lar container with hard walls.

Our simulation employs three types of Monte Carlo
moves. In addition to traditional local, single-particle
moves, we allow moves to any position in the system, and
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FIG. 2. Decorated Penrose pattern. Large atoms inscribed
in decagonal regions, small atoms distributed among remaining
vertices.

three-particle “flips” which interchange the position of a
large atom with two adjoining small atoms. While the
acceptance ratios for the latter two types of moves are
small (generally less than 1% below the transition), they
are an extremely effective aid to equilibration. In partic-
ular, the flips efficiently break up metastable configu-
rations containing close-packed triangles of like particles.

We studied a range of system sizes, from seven atoms
up to 132 small atoms and 140 large atoms (Fig. 1). All
of the systems showed quasicrystalline states at low tem-
peratures. The most defect-free configurations were ob-
tained for concentration ratios near 1.06 large atoms per
small atom (the value expected from decoration of a
Penrose pattern). When the proportion of large disks
was higher, the extra large disks tended to be rejected
from the bulk, accumulating at the surface.

The configuration shown in Fig. 1 is the result of cool-
ing from B=3.3 by factors of 1.025 for twenty tempera-
tures with 8000 Monte Carlo steps per particle at each
temperature. Flips were attempted after every five at-
tempts to move each particle individually. The system
was then quenched to a B of 20.0. The ordering transi-
tion occurs at a B of approximately 4.4. Several separate
cooling runs were performed. The results for internal
energy and for bond-angular order parameters from
these separate runs were in good agreement in the or-
dered phase, although some discrepancies were observed
near the transition. Hysteresis was observed upon heat-
ing of the system through the transition.

The reproducibility of our results leads us to believe
that the quasicrystalline state in this system is, in fact,
the equilibrium phase of these temperatures.

Notice the nearly perfect short-range order in the inte-
rior of Fig. 1. Each bond is close to its optimum length.
All local configurations may be found in a Penrose pat-
tern, with one exception which will be discussed shortly.
All pairs of bonds form angles which are close to integer
multiples of 36°. In two dimensions, perfect local bond-
orientational order guarantees perfect long-range bond-
orientational order.!3 Calculating the bond-orientational
order parameters 4

O, = |{exp2ring)) |, 4)

we find sharp maxima when # is an integral multiple of
10.

Figure 3 shows all local environments which are likely
to occur in the equilibrium phase at low temperatures.
Note that there are just three distinct ways to pack
atoms around a small atom, and six ways to pack atoms
around a large atom. What about those equilibrium
configurations which are not found in Penrose patterns?
These are the rows of three colinear adjacent large atoms
which may be seen in Figs. 1, 3, and 4. Penrose match-
ing rules prohibit linear chains of three or more large
atoms. Our system consists of Lennard-Jones atoms
with two-body central forces only, and so there is no ob-
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FIG. 3. Complete set of low-energy local environments.

vious mechanism for creating Penrose matching rules.
We believe that our quasicrystals exploit the configura-
tional entropy available by violating the matching rules.

Figure 4 shows a configuration which contains a meta-
stable defect in the interior of the sample. Defects of
this sort are likely to occur with great frequency in rap-
idly quenched quasicrystals. Indeed, it is almost impossi-
ble to eliminate this defect by annealing of our system
below the freezing temperature. The reason is that al-
though the atoms in the defect-free region of the sample
display perfect short-range order, there is an inconsisten-
cy in the positions of atoms near the defect which
prevents the region in between from filling with atoms in
the low-energy configuration of Fig. 3. Because we must
disturb a large number of atoms which sit in low-energy
configurations in order to remove the defect, it is rela-
tively stable.

Although no numerical simulation can provide a
rigorous proof that the quasicrystalline states are equilib-
rium states, a related model can be analyzed simply and
proven to have quasicrystalline equlibrium and ground
states. This model utilizes the same decoration of a Pen-
rose pattern (Fig. 2) as our Lennard-Jones system.
However, instead of the bond strengths of Eq. (3) we
take

ELS=ESS=1» ELL=2~ (5)

Recognizing that the interactions (5) encourage phase
separation, we exclude from consideration configurations
containing close-packed triangles of identical atoms. For
convenience, we truncate the Lennard-Jones potential at
nearest neighbors. Finally, we ignore vibrational contri-
butions to the entropy (explicit calculations in 1D sug-
gest that they are unimportant anyway).

The choice of interactions (5) plus the truncation of
the potential creates an interesting degeneracy among
configurations. Setting Ess =FEs ensures that all three
environments of a small atom are degenerate. Similarly,
for each large atom the number of LS bonds plus twice
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FIG. 4. Metastable quasicrystal configuration containing
defect.

the number of LL bonds always totals ten. Thus the con-
dition E;; =2FE;s ensures that all six environments of a
large atom are degenerate.

As a result of this degeneracy among local environ-
ments, all candidates for ground-state structures have
equal energy. Thus crystals with large unit cells, Pen-
rose patterns with matching rules, and quasicrystals
without matching rules are degenerate at zero tempera-
ture. The true ground state must then be determined by
entropy differences in the limit as 7— 0. The config-
urational entropy available from violations of Penrose
matching rules makes the quasicrystal the equilibrium
and ground state of this model.

This model of a quasicrystalline ground state is remin-
iscent of Pauling’s ice model.'®> The third law of thermo-
dynamics is apparently violated because of the high de-
generacy of the ground state. Of course, in both
Pauling’s ice model and our quasicrystal model, long-
range interactions are likely to lift the degeneracy of the
ground state. The quasicrystal should still be the equi-
librium state down to very low temperatures. The deter-
mination of the complete phase diagram of this model in-
cluding long-range interactions and atomic vibrations
will be a great challenge.

In summary, we present Monte Carlo simulations of a
two-component Lennard-Jones system which spontane-
ously forms a quasicrystalline state. This state appears
to be in thermodynamic equilibrium. The quasicrystal-
line configurations belong to a general class of structures
which include Penrose patterns as a small subset. Final-
ly, we present a simplified model which has quasicrystal-
line equilibrium and ground states.
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