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We present a bosonic realization of the SU(2) ® SU(2) algebra of the skyrmion. By imbedding the
algebra in U(4), we introduce an additional quantum number N, which we identify with the number of
colors, N.. We show that the skyrmion is a coherent state of the U(4) algebra in the large-N limit and
generalize that state to finite N. For N =N,=3, we recover the SU(4) quark model. The algebraic
1/N, corrections to one-body matrix elements in the skyrmion are discussed.
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The skyrmion offers an attractive picture of the nu-
cleon as part of a classical solution of a nonlinear field
theory of chiral mesons that arises from QCD in the
large-NV, limit.! The nucleon and A can be obtained from
the skyrmion by use of semiclassical quantization
methods to project the spin S and isospin I, giving a
tower of I =S states with /=S= ;—, 3. ....2 The un-
bounded nature of this tower is a manifestation of the
large-/V, limit. Much work has been done in the study of
the projections, and other interesting features of the
model.?> Most of this work exploits the underlying
SU(2) ® SU(2) structure of the skyrmion algebra rather
than the nonlinear nature of the field theory.

On a different front, it has recently been shown in nu-
clear and molecular physics that dynamical symmetries
are conveniently expressed in terms of interacting bo-
sons. These models applied to nuclear physics [the
interacting-boson model based on U(6)]1* and to molecu-
lar physics [the vibron model based on U(4)]1° have been
very successful at correlating a great deal of data both in
structure and scattering and in providing a simple and
elegant method for dealing with complex systems.

In this paper we present a realization of the skyrmion
algebra in terms of interacting bosons. We show that the
skyrmion is a coherent state of the U(4) algebra in the
large-/V limit, N being the number of bosons. We identi-
fy N with N., the number of colors in QCD. This per-
mits a simple generalization of the skyrmion to finite V.,
makes the projection calculations very direct, and offers
considerable scope for generalization to flavor SU(3) and
to the meson-baryon sector.

We begin by noting the isomorphism SUQ2) ® SU(2)
=0(4). The algebra of O(4) is expressed by the com-
mutation relations among two three-component opera-
tors K; and D; (i=1,2,3), ie., [Ki,Kj] =i8iijk;

[(c—K

)/2]
| INlokM)=BY ¥ F,,(a,K)(bJ)°'K‘Z"[z4;b,Tb,-*

n=0

i=]

[K,',Dj] =i€ijka; and [Di,Dj] =i€,‘ijk, with Casimir in-
variants ¥, (K2+D?) and ¥,K;D;. Alternatively, the
operators S; =7 (K;+D;) and I, = § (K; — D;) generate
SU(Q)®SU(2). This algebra is easily realized in terms
of the a’s of Adkins, Nappi, and Witten? (ANW)
by K;= —igja;0/dax and D;=i(a;0/0a4—a4d/da;).
These a’s are related to the SU(2) unitary rotations, A,
of the skyrmion by 4 =as+ia;z; with Y., a?=1, so
that S; and /; become the spin and isospin, respectively.
The boson realization of the algebra is given in terms of
four boson operators, b; (i =1,2,3,4), by

b; =(a; +98/0a; )2,
(1)
b =(a; —8/3a;)/V2,

satisfying [b[,b}-f] =J;j, so that K; = —z'sijkbj-"bk, and D;
=i(btbs—blb;). Also in this realization, S2%—12
=Y 2=\ KiD; is zero [symmetric representations of O(4)]
so that states generated by the algebra will have I1=S.
The constraint 474 =1 (or equivalently Yiat=1)is a
condition on the Hilbert space implemented by our tak-
ing O(4) eigenstates.

One can imbed O(4) in U(4) which will then yield
representations with fixed boson number, N =Y ., b'b;.
In the boson realization both the spin and isospin opera-
tors and therefore also the Hamiltonian H =M +S%/29
conserve the number of bosons. We review some proper-
ties of the group chain U(4)D>0(4)D>0(3)>0(2). In
the symmetric representation, the states are |[N],o,K,
M) with allowed values o=N,N—2,...,(1 or 0);
K=0,1,...,0; Ka=M=—K,—K+1,...,K. K; and
D; commute with N. In the boson realization of the
ange6bra the U(4) states are Nth-order polynomials in
bi P
(N—=0)/2+n

4/ QK+ DM 2iKY 0 (b ],63,6D)|0),  (2)

with BY, F,(0,K), and Y g defined in Ref. 6, Egs. (4.21), (4.23), and (4.10), respectively.
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The connection between these states and the states of good spin and isospin is made by an ordinary Clebsch-Gordan
coefficient. Using the fact that in symmetric representations S =1 =o0/2 and K; =I; +S;, we have for the states of good
I'and S

| INLI=S=0/2,1383)=3 y s | INIcKM)XII3S53| KM). 3
If NV is even these will contain states of /=S =0,1,...,N/2, while if N is odd these will contain states of /=S =,
3 ...,N/2. This suggests that we can identify N with N., the number of colors. In the large-N limit, we have an

infinite tower of I =S states as in the skyrmion, while for N =N.=3 we have / =S = 1 (nucleon) and 3 (A). Com-
bining (2) and (3), we can construct states of good spin and isospin. For example, for the proton (¢ =1) with spin up
and general NV odd, we have

. 4 N-1)/2
[IN],I=S,13Sy)=|IN] %, + L.+ L)=—LBY0b]+ib]) zb,fb,-*] |0). (4)
V2 i=
The above discussion suggests that the skyrmion corre- [

sponds to a U(4) coherent state in the large-N limit orthonormal with respect to the measure of the three-
(with V odd). To show this correspondence explicitly, sphere.
we study how the spin-isospin projection functions are The quantized skyrmion wave functions of ANW are
constructed in our algebra and how they correspond to now given by

the functions discussed by ANW, and show that for
large NV the expectation value of operators is the same as
in the skyrmion case.

The coherent state” is known to be useful in studying
the connection between algebraic and geometric models?®:

\1’1-5,13,53(0) = Z (II3SS3 | KM)g,,-ZI‘K,M(Q ), (D
KM

where the a’s in ANW correspond to the B(Q)’s. The
functions g,xa are either even or odd under the “parity”
N transform, Q— (— Q)= +7,0,¢) or equivalently

1 4 + (r—=2,n—0,0+1): goxm(—Q)=(—)%xp(Q). In
[IN1B:) [Z Bibi ] 0), ) the limit of /V large and odd (and therefore also o odd),
{gokm (2)} becomes complete in the parity-odd function

i=1

with ¥, B¥B;=1. It is convenient to parametrize the space. Thus the N large and odd coherent state contains
Euler-Rodrigues parameters B; in terms of Q =(x,6,¢), an infinite tower of I =S =half-integer states. The
Le., By =sinXsinfcosg; B, =sin¥sinfsing; B3 =sinXcosb; coherent state with N large and even corresponds to an
and B4 =cosX. Taking the overlap of Eqs. (2) and (5), integer-spin skyrmion. The existence of this alternative
we obtain is well known (see Ref. 2). Henceforth, we only discuss

(IN1Q | INIoKM) =PV xas(Q), the case of physical interest— N odd.
To complete the connection with the skyrmion it can
Zoxa () =0FCEX{ (cosx) (i sinX) XYk (6,0), be shown that the matrix element of any k-body boson
(6) operator (k finite) becomes diagonal in the coherent-
PY =[472NV/(N — )W (N +o+2)1]172, state basis in the large-/V limit. With the classical limit®

08 =2KK'2(c+ 1) (6 — K)/r(o+J+ 111172, of a k-body operator Oy defined by

where CX*} is a Gegenbauer polynomial and PY is 0"(9)5,\,11?]‘,0([1\/]9|@"|[N]Q>/Nk’ ®)

defined so that g,gxa(2), which is independent of N, isJ we obtain in the large-N limit

lim (IN1,1=S8,I55;| O | [N],I’=S’,I§S§>/N"=fdn Yims.1,5,(2) Ok () ¥ o 50 (Q), 9)
N—» oo
which coincides with ANW’s formula for matrix ele- |
ments. space rotation group is given by R;; =% Trlz; 47,41
By imbedding the spin-isospin group into U(4), we By using Eq. (1), we write the R;;’s in terms of the boson
have introduced an additional quantum number N, operators: for instance,

which we identify as the number of colors N.. This

=24 g2 —g?—g2=pRS .
identification enables us to compute the dependence of Ry=aitas—at—ai=R5+Rj,

. i . (10)
physical quantities, such as the g4 factor, magnetic mo-

ments, and transitions, on the number of colors. Recall R3; =bIb4+b;b3~—bfb1 _b;bb

that the classical soliton Uy is quantized by the isospin where Rfj conserves boson number, while R/; is a term
rotation 4 =ay+tia;7; (Z,-a,-2=1) (in the notation of which changes the boson number by either 2 or —2.
ANW). The corresponding element of the orthogonal Since all states are characterized by a fixed boson num-
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ber NV, the matrix elements of R;; vanish. The R{’s with
the spin S and the isospin I form an SU(4) algebra,

1,,RS;/2) =iepg RSi/2,
[Si»st/Z] =i£,~jkr5k/2’
[R5i/2,Rg;/21 =i(8ijpqr I + SpgeijicSi).

an

Therefore the isovector axial vector current is given by
AP=—R;;/2, which is consistent with the Noether
current for the skyrmion (ANW). From Eq. (11) we
observe that p is an isospin index and / is a spin index in
Rpi. Note that the last commutation relation of Eq. (11)
holds only for the part Rf; which conserves boson num-
ber, while the full R;;’s commute with each other. It has
been pointed out by several authors® that the skyrmion
has the same symmetry structure as the large-N, limit of
the quark model. In Eq. (11) we have shown that even
for finite NV the SU(4) current algebra can be obtained
by restricting the operators to be boson-number conserv-
ing. This was to be expected since our U(4) algebra is
given by the fifteen SU(4) generators and the number
operator V. For N =N,=3, the U(4) irreducible repre-
sentations are identical to those of the SU(4) quark
model.  Generalization of this SU(4)CU(4) to
SU(6) cU(6) should be straightforward.

We now want to study the NV dependence of one-body
operators (bilinear forms of the bosons) to establish that
in the large-/V limit we obtain the skyrmion results, while
for N=N,=3 we obtain the quark-model results. Of

(INLI=S=13 |us3 | INL,I=S=1L)=poNI(1 — 1/N)U +5/N)/21 VX SLIL),

where S% (14) is the transition spin (isospin) operator
normalized by (S§=S;=13|S%,|S=S;=%)=1. The
matrix element is zero if N =1 because no /=S=12
state exists then. Again there is an enhancement factor
of % between N =3 and the large-N limit, which is
necessary for agreement with experiment. The transition
matrix element of the quadrupole operator is proportion-
al to that of RS$3, and therefore the E2/M 1 ratio for A
photoproduction does not depend on V.

In conclusion, we have seen that by use of a boson
realization of SU(2)®SU(2)=0(4) and imbedding of
the O(4) in U(4), the skyrmion can be thought of as a
U (4) coherent state in the classical limit (large N). This
makes the projections of states of good spin and isospin
very simple and easily permits generalizations to finite
N. We have identified N (number of bosons) with N,
(number of colors) and have studied the N, dependence
of some matrix elements. This algebraic leading N,
correction to the skyrmion gives a significant effect, al-
though it is not the only 1/N, correction. These correc-
tions have been discussed by several authors.®!® We have
found that for N =N, =3 the SU(4) quark-model results
are recovered in our formalism. Our approach points to
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the sixteen U(4) generators, which are one-body opera-
tors in the boson realization, i.e., b'b; (i,j=1,...,4),
the six SU(2)®SU(2) generators, I,’s and S;’s, have
matrix elements independent of V. The number operator
N has a trivial N dependence. We calculate the N
dependence of the matrix element of the remaining nine
one-body operators, Rp;’s: The diagonal matrix element
1S

(INLI=S,1,S3| RS | IN1,1 =S,13S%)

= —Nf(N,1)41,S),  (12)

where [N D) =l/UT+1D](0+2/N)=5 x5 (N=3)
and ¥ (large N) for the nucleon (I=1). For N=N,
=3 this result is in agreement with the quark model.
For large IV it reproduces the skyrmion result recalling
the definition of the classical operator (8). Therefore the
1/N correction to the nucleon g4 factor in the skyrmion
is given by 1+2/N. The isovector magnetic moment is
also proportional to Rf;: upi = -—,u()R,§,~,2 and thus has
the same 1/N correction. Because the isoscalar
magnetic-moment operator is proportional to the spin S;,
it is independent of V. For the skyrmion, yg=5/2, J be-
ing the moment of inertia of the skyrmion. It is well
known that the isovector magnetic moment and the g4
factor of the nucleon are too small when calculated in
the Skyrme model. The enhancement factor 3 for
N =N, =3 gives a natural remedy for this discrepancy. '’
The magnetic transition matrix element between the nu-
cleon and A is

(13)

obvious generalization to SU(6) DSU3)gaver ®SU(2)
and to new ways to approach the meson-nucleon!' and
nucleon-nucleon problems. '2

This work was supported in part by a grant from the
National Science Foundation.

IT. H. R. Skyrme, Proc. Roy. Soc. London, Ser. A 260, 127
(1961), and Nucl. Phys. 31, 556 (1962); A. P. Balachandran,
V. P. Nair, S. G. Rajeev, and A. Stern, Phys. Rev. Lett. 49,
1124 (1982); E. Witten, Nucl. Phys. B223, 422, 433 (1983).

2G. S. Adkins, C. R. Nappi, and E. Witten, Nucl. Phys.
B228, 552 (1983); G. S. Adkins and C. R. Nappi, Nucl. Phys.
B233, 109 (1984); see also G. S. Adkins, in “Chiral Solitons,”
edited by K. F. Liu (World Scientific, Singapore, to be pub-
lished).

3A. D. Jackson and M. Rho, Phys. Rev. Lett. 51, 751
(1983); I. Zahed and G. E. Brown, Phys. Rep. 142, 1 (1986).

4A. Arima and F. lachello, in Advances in Nuclear Physics,
edited by J. W. Negele and E. Vogt (Plenum, New York,
1984), Vol. 13.



VOLUME 58, NUMBER 7

PHYSICAL REVIEW LETTERS

16 FEBRUARY 1987

5F. lachello and R. D. Levine, J. Chem. Phys. 77, 3046
(1982); O. S. van Roosmalen, F. Iachello, R. D. Levine, and
A. E. L. Dieperink, J. Chem. Phys. 79, 2515 (1983).

6R. Bijker, R. D. Amado, and D. A. Sparrow, Phys. Rev. A
33, 871 (1986). Note that the definition of the solid harmonics
Yim in this reference has a misprint: The second binomial
coefficient in the sum should read (;_57%)/).

7A. M. Perelomov, Commun. Math. Phys. 26, 222 (1972).

8R. Gilmore, C. M. Bowden, and L. M. Narducci, Phys.
Rev. A 12, 1019 (1975).

9K. Bardakci, Nucl. Phys. B243, 197 (1984); A. V.
Manohar, Nucl. Phys. B248, 19 (1984).

10A. Jackson, A. D. Jackson, and V. Pasquier, Nucl. Phys.
A432, 567 (1985).

A Hayashi and G. Holtzwarth, Phys. Lett. 140B, 175
(1984); J. D. Breit and C. R. Nappi, Phys. Rev. Lett. 53, 889
(1984); K. F. Liu, J. S. Zhang, and G. R. E. Black, Phys. Rev.
D 30, 2015 (1984); A. Hayashi, G. Eckart, G. Holtzwarth, and
H. Walliser, Phys. Lett. 147B, 5 (1984); M. P. Mattis and
M. Karliner, Phys. Rev. D 31, 2833 (1985); M. P. Mattis and
M. E. Peskin, Phys. Rev. D 32, 58 (1985).

12A. Jackson, A. D. Jackson, and V. Pasquier, Nucl. Phys.
A432, 567 (1985); R. Vinh Mau, M. Lacombe, B. Loiseau,
W. Cottingham, and P. Lisboa, Phys. Lett. 150B, 259 (1985).

657



