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Quantum-Mechanical Treatment of the Skyrme Lagrangean, and a New Mass Term
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We consider the quantum mechanics of the SU(2) skyrmion model in the framework of collective-
coordinate quantization. We treat the Lagrangean quantum-mechanically from the beginning. A new
mass term with negative sign appears, which may play an important role in stabilizing the rotating chiral
soliton.
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The purpose of the present note is to reexamine quantum structures of the SU(2) Skyrme Lagrangean, especially of
the skyrmion mass term, in the framework of the collective-coordinate formalism. Usually, as in the standard ap-
proach, canonical quantization is performed only after the Lagrangean is expressed concretely in terms of the collec-
tive coordinate treated classically. In order to go to a quantum theory from a classical one, it is necessary to specify the
quantization procedure. In contrast to the procedure of Adkins et al. ,

' we treat the Skyrme Lagrangean quantum
mechanically from the beginning in accordance with the quantization procedure of nonlinear theories, which has al-
ready been investigated by some authors. [The SU(2) Skyrme model is the simplest example of quantum mechanics
on a curved space. ] In our treatment, we have to take care of the ordering from the outset. It is expected that some
new terms appear. In the following, it is to be pointed out that, in the skyrmion mass, a new negative term appears,
which serves to stabilize the rotating chiral solitons; therefore, the instability problem of such solitons should be recon-
sidered with the existence of the new term taken into account.

We start with the SU(2) Skyrme Lagrangean

L(UL~,x, t) =f Tr(Ut. ~Ut.~)/4+Tr(lUte, ULz] )/32e, +f m Tr(U+Ut —2)/4,

with UL~=(B~U)Ut and (f ),„&&=93 MeV. Existence of
the soliton solution with appropriate boundary conditions
is assumed, and the collective coordinate A(t) is intro-
duced as in Ref. 1: U(x, t) =A(t)o(x)A(t) . We use a
set of three real parameters q 's (b =1,2, 3) so as to
specify an SU(2) matrix A (t). As A t(riA/tlq')
=A tB,A belongs to the Lie algebra of SU(2), we can
write

where f'"(q) is a function of only q's and is determined
after the quantization condition is imposed. Next we
define

wB = fq', C.B]/2,

and also the quantum form of A =dA/dt as—

A 'a.A =trBC(q). B/2. (2)
A(q) =Iq', tl, A(q)]/2. (7)

Here the summation convention is adopted. The inverse
of (Cb ) is defined as

By employment of

C ECb —6'p, C pCy (3) it is easy to derive

ICb ] and fC Dj have various important properties, one
of which is

A tA =i rBwB/2+if BB/8,

where

(9a)

C 8 C —C BbC' = FC', (4) fBD C BC Dfab (9b)

where eE~F is the totally antisymmetric tensor.
The basic assumption in the construction of quantum

mechanics of the present model is that we require the
commutation relation between q =dq /dt and q:

tq", q'] = if"b(q), —

Note that 2, as defined above, has the desired property:

w ~w+w'w =wc t+ww'=o. (10)

The quantum form of 81M has a term proportional to
the unit matrix. This corresponds to a term aoao+a~ag
appearing in A A when we use (ao, aB) variables with
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A =ao+iaB rB ' . We can, however, take A A to be equal eAectively to i zBw /2 in L(UL~), because

UL4 = —iA [A tA —crA tAcr]A t =XBDArDwBA t (1 i a)

where

rB cr(x) rB a( x) 2+(x)BD ~D. (1 lb)

With the help of

[w A] =f ArD/2,

we can demonstrate that

L(UL~ ,x, r) ='a(cr;x)BDw w /2+ [term of order (w )o],

where

a(cr»)BE 4[y BE,DD+ y BE,DD] +BE,DK f +BD+EK/4 +BE,DK (k 4k +BG+ELEFGD~HLK/1«

[c)cr(x)/c)xk] cr(x) t =i rB&(x)k B/2.

The proof is given as follows: First, the contribution of UL4 to L(UL~),

L (UL4) =f Tr(U—L4UL4)/4+ Tr([ULk, UL4] [ULk, UL4] )/16e, ,

is rewritten as

L (UL4) (IBE,KJ+ +BE,KJ)Tr(Aw w rK rJA

Because of (12), we cannot simply eliminate A and A t in the trace. This part is expressed as

Tr( ) =2w w &KJ
—r(f w +w f )BMKJ+f f (&MK&JN —&MJ&KJv+&MJv&KJ)/2.

(i 2)

(i3)

(14a,b,c)

(i4d)

(i Sa)

(1sb)

The first term on the right-hand side of (16) corresponds
to the term obtained in the standard approach' and leads
to the rotational energy, while the remaining terms are
new contributions which are brought about by our
quantization procedure. Making use of p, = 6L (ULp)/~q =

2 Iq, gab] (20)

Now, we can define the canonical momentum p„con-
jugate to q', as

~B),KL(x) +P),LK(x) (i7a)

[ B fEM( )] ifbd( Bg fEM

Similarly, we can prove from (13)

L(U„;x,i)
=q'd(cr;x), bq /2+ [term of order (q') o],

where d(cr;x),b=a(cr;x)BDC, Cb

Thus, we have

(LU p)L—:„d x L (ULp, x, r )

(17b)

where

=A(cr)w w /2+ [term of order (w ) ] (19a)

=q'g, b (q)q /2+ [term of order (q ) o],

we see that the terms of order (w ) ' on the right-hand
side of (16) reduce to ones of order (w ) because of

We impose the commutation relations

[p„q ] = —i6, ", others =0.

Then we easily obtain

fabg p b

AtA =ir w /2+3' /8A(a), '

[wB, A ] =A rB/2A(a)

For RB —= —[p„C'B]/2, we can prove from (4)

[RB,RD] = rBBDERE, —

RB = —wBA(cr)

Using these relations, we get

(2i)

(22a)

(22b)

(22c)

(23a)

(23b)

~( )a, —=)"d' (; )„,
g,b(q) =A(a)C, BCb

(19b)

(i9c)

L(ULp) =RBRB/2A(cr) —[M(a)+&M(cr)], (24)

where A(cr) and the "classical" mass term M(a) reduce
to A[F] and M[F] ' for the hedgehog form of
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a(x) =exp[iF(r)x z],

A[F].= drr s ' f2+ F'2+
S

M[F] =2m) drr2~ f2 F'2+ +

S 2

2

2F' + +2m fz(1 —c)
~.r 2 e 2 r

(25a)

(2Sb)

&M(a) is the new contribution appearing through our quantum-mechanical treatment of the Lagrangean part with the
time derivative, (15a); in other words, this contribution comes from the last part on the right-hand side of (16). Note
that the second part on the right-hand side of (16) vanishes as a result of f~D=&~D/A(cr). AM(o) for the hedgehog
solution is given by

AM[F] =
~ drr s 'fz+ 2F'2+ ~= +

—2z, ~f 2 2 2 1,2 s —3 1
dr s4.

A[F] 0 2e' r' 4A[F] A[F]' e' "o

For the hedgehog configuration, the energy of I =J =I(1+1)state is from (24) equal to

H( [F] =M [F]+5M[F]+1(1+1)/2A[F].

(26)

(27)

Note that both the second and the third terms on the right-hand side are of the order 6 . The integrodiAerential equa-
tion is derived so as to minimize H~ with respect to F. With the aim of examining the asymptotic solution, we derive
the linear diAerential equation for sufficiently large r:

r F"+2rF' —2F @fr F—=0, (28a)

with

pf =m„+ 1 2l(l+1)
A[F] ' +1— 8z "

d 4

3e A[F] "0 (2gb)

pj & 0 is needed for a desirable asymptotic behavior
F(r) —e ""/r. We have for the chiral limit

p 1)2(m.—0) = 1 4x J[F],A' 3f~,'

with

(29)

J[F]—:„dz z s (1 +F ' —s /z ),

z =f~,r, F(z) =F(r), s =sinF.

J[F] is not always negative as a result of hM and possi-
bly becomes positive. It is necessary to solve the
integrodifIerential equation to see whether or not there
exists a physically acceptable F(r) with J[F] &0, but
this goes beyond the scope of the present paper. Never-
theless, in spite of the existence of hM, the instability for
the I = —', state still remains for a small m . From the
above consideration, we see that the argument given by
Braaten and Ralston concerning the 6-% mass
difterence does not hold straightforwardly.

We add lastly one remark on the ambiguity of the
starting Lagrangean form. L (U~~), obtained from
L(UL~) by substitution of U~~=U rl~U for UL~, is shown
to be equal to L(UI~) quantum mechanically. So there

!
is no ambiguity in the form of hM.

Details of the present paper and considerations of
some eAects brought about by our quantum-mechanical
treatment will appear elsewhere.
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