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New Reentrant Wetting Phenomena and Critical Behavior near Bulk Critical Points
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Wetting phenomena near the bulk critical point of an adsorbate are examined for the realistic case of
long-ranged (e.g. , van der Waals) forces, with use of mean-field theory for an Ising lattice-gas system.
For moderately strong long-ranged forces new critical behavior appears at and near T„accompanied by
both reentrant wetting and dewetting transitions and the appearance of two distinct wetting phases.

PACS Numbers: 68.45.Gd, 68.15.+e, 68.35.Md

Current theoretical understanding of wetting phenom-
ena near a bulk critical temperature T, in real systems,
e.g. , ones with van der Waals forces, is based in large
measure on recent detailed mean-field calculations' for
Ising lattice-gas systems supplemented by some general
arguments. The predictions can be understood in the
context of earlier work by Nakanishi and Fisher (NF)
on the case of short-ranged forces because certain impor-
tant features survive nearly intact. ' However, as we
discuss here, this statement is true only for relatively
weak long-ranged forces. For stronger, but still physical-
ly reasonable, forces, new transitions appear, some ac-
companied by striking reentrant wetting (and nonwet-
ting) behavior.

Our results are obtained within mean-field theory
(MFT) for an Ising lattice gas. As has been noted else-
where, the essential features of long-ranged forces are
governed by a linear combination of adsorbate-substrate

(AS) and adsorbate-adsorbate forces. We therefore sim-
plify our computations by using only a short-ranged
adsorbate-adsorbate interaction, regarding our long-
ranged AS interaction as an eA'ective interaction incor-
porating the essential eAects of all long-ranged forces.
The validity of this procedure in MFT has been checked
in selected cases. Our long-ranged AS interaction is tak-
en to vary as z, where z is the distance from the sub-
strate, rather than z, which would be the behavior of
unretarded van der Waals forces, because the latter has
a marginal range in MFT in three dimensions. We
choose to use a submarginal case in our MFT since the
I/z potential is submarginal when fluctuations are tak-
en into account, i.e., in the real world. We hence expect
our results to be relevant to real systems with van der
Waals forces. The marginal case in MFT will be the
topic of a separate publication.

In MFT, the free-energy function for our model may
be written in magnetic language as

II = g [(r/2)(m; —m;+1) +f(m;) —h;m;] —gmt gm~/—2,

in which m; is the expectation value of a spin in the ith layer from the substrate; in terms of the particle number density
p;, m; =2p; —1. If —e& is the interaction energy between nearest-neighbor atoms in adjacent layers and v& is the
number of such neighbors that a site has, then r =s&v~/4. If e~~ and v~~ are analogous intralayer quantities, and if the
interaction within the first layer is —s~~(1+D), then g = —(s&v& —stvtD)/4. Further, h; = —U;/2 where Ut is the AS
interaction in layer i, and
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where uo = T/3; po = —(e& v&+ s~~ vs/2) is the chemical
potential at bulk coexistence; and t =T+po/2=T —T,.
Minimization of 0 (fm;l ) produces the mean-field equa-
tions

f'(m;) —r(m;~1 —2m;+m; 1) —h; =0, i ) 2, (3a)

f'(m)) —r(m2 —m)) —h) —gm| =0, (3b)

where ht =g —U~/2.
The case of NF is h; =0, i ) 1. For this case the

phase diagrams (cf. Ref. 4) in U| —t space show lines of
wetting and drying transitions at t (0 which meet at

t =0 in an ordinary point (0) if g & 0, a special point
(SP) if g=0, or an extraordinary point (E) if g&0.
These transitions are always first order except in the case
of g & 0 for which they are continuous at small

~
t

~
but

become first order at tricritical points at some larger
value of

~
t ~. As g 0, the tricritical points rise in tem-

perature and merge into the special point at g =0.
Within MFT the various lines are described at small

~
t

~

by ( t
~

—(h|~ ' where At = —,', 1, and —,
' for g &0,

g =0, and g & 0, respectively.
If there is a long-ranged potential U; which is not too
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large, fairly intuitive qualitative arguments can be used
to predict the changes relative to the NF case. Briefly, if
U„=U/n" for n & I, the free energy of a wetting film of
thickness I acquires a piece AQ =A/1" ' where A & 0 if
U &0. This free energy has a minimum at I =~, and a
transition to this state from one with finite I can only
occur discontinuously; i.e. , it must be a first-order transi-
tion. For a drying film, AQ = —A/1" ' and, for t&0,
there is never a minimum at l=~, i.e., drying transi-
tions cannot take place because the long-range potential
traps a film that would otherwise dry. There is, however,
a continuous drying transition at t =0 (T=T,). These
arguments suggest that the phase diagrams shown in Fig.
1 replace those of NF for long-ranged potentials with g
and h~ replaced by efI'ective equivalent parameters. In
Fig. 1, W and PD are always lines of first-order wetting
and partial drying transitions, the latter being character-
ized by a finite discontinuity in l. The line PD ends at a
critical point for g' &0; for all g' there is drying only
at T, and h ~ & 0. Detailed mean-field calculations for
relatively weak potentials U„=U/n", x) 4, show that
Fig. 1 is correct. However, significant changes, including
new phase transitions and reentrant wetting and nonwet-
ting, appear for suSciently strong U. We turn now to
discussion of these new phenomena.

We begin with an instructive but brief analytic study
of special points; this is best done by our casting the
equations in the form of an efectively short-ranged po-
tential problem, a procedure which has been given in
more detail elsewhere. We first write m„=m„+6m„,
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where m„satisfies the homogeneous equation

f '(m„)—r [m„~i +m„-i —2m„]=0. (4)

By iterating in from large n where h„is negligible, we
find a surface boundary condition on m„given by

r(mz —mi) = —h f —g'~mi+ uomi,

hi' =hi+g6mi+r(bmz —hami) —uo8mi,

g'~=g —3uo[mi8mi+Smi ],

(sa)

(Sb)

(5c)

if f(m) is taken as (at t =0) uom /4. The effective sur-
face field h ~ and coupling enhancement g' depend on
the Bm„which are given by

FIG. 1. Phase diagrams in hi rspa-ce for
~
U

~
& U, and for

(a) g' &0, (b) g' =0, (c) g' &0. Details are discussed in

the text.

6m„=(26m„+i
—6m„+z) —h„/r+ [f'(m „~i +Sm„+i ) f '(m „~—i ) ]/r

At ordinary and special points, m„=0 if h„ is small
enough. Thus one is motivated to look at small values of
m„,assuming that the h„'s are not too large. Then Eq.
(6) may be approximately solved and one finds in place
of Eq. (Sa)

r(m2 —mi) = —hi —gmi —3uoH2mi+uomi, (7)

where h~ and g are constants and only the most impor-
tant quadratic and cubic terms in m„sare kept while
higher-order terms are discarded. Also,

6m„=—H„+i = ——g (l —n+ I )h(.
1

r I-n
One now solves Eq. (4) subject to the condition Eq. (7).
At a special point where h~ =0 and g=0 in the short-
ranged case, the only solution is m„=O. In the long-
ranged case, a new solution appears if H2 is large
enough. To see this, note that m„=A/0 +n) solves Eq.
(4) with A =0 or +' (2r/un) '~ if k )) 1. Use of this form
of m„ in Eq. (7) yields k =(upA /r)(3uoH2A/r —I)
Since we must have X & 0 for a physically sensible solu-
tion, we must have A =(2r/uo) ' and H2 & (r/18uo) '

If we let U„=U/n for n) 2, then Hz= —0. 11883U/

2r. For a fcc lattice with a [111]direction normal to the
substrate, v~[ =6 and v& =3. Further, taking c& =

e~[
=

3

so that T, =1, we have po = —2 and r =
4 . Using these

facts and noting that uo(t =0) = —,', we find the approxi-
mate criterion for the appearance of a new solution to
be, for an attractive potential,

~ U~ &0.859—:U, .
The stability of this solution is difticult to determine

analytically. Numerical solution of the full MFT shows
that it first appears for

~
U

~

=0.7-0.8, somewhat below
the approximate analytic prediction, and that it is the
stable solution. More general numerical solution of the
mean-field equations at T, produces the results summa-
rized in Fig. 2. For

~
U

~
& U„the changeover from 0 to

E points as a function of g occurs at a special point as
shown in Fig. 2(a). For

~ U~ & U„the behavior is de-
picted in Fig. 2(b). The predicted special point SP is not
a stable solution; nor are the predicted ordinary points 0
to the right of the crossover point X. Rather, for any
given g & gx there is always a point E' where two solu-
tions coexist, as in characteristic of an extraordinary
point. As U~ decreases from this point at constant g, one
solution becomes metastable; this is the one that evolves
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FIG. 2. Phase diagrams in U~-g space at t =0 for (a)
IUI &U, and (b) IUI &U, .

c, ,

(c) 9 & 9 (d) g& g

into the ordinary-pointlike solution on the line 0, given
that g & gsp. For g & gx, on the other hand, one has the
unexpected occurrence of both a line of stable ordinary
points O and a line of stable points E' which terminates
at V. The range of g for which this behavior is found
depends on U; at U= —1.0, gv=0. 0445, g =0.0523,
and gsp=0. 0612, while for U= 1 5 gv=0. 0680 gx
=0.0950, and gsp=0. 150; increasing

~ U~ produces a
larger interval gx —gv.

To understand further the behavior of these systems
we consider next the regime T & T, at bulk coexistence.
Figure 3 shows qualitative U ~

—t phase diagrams for
fixed g as determined by detailed numerical solution of
Eqs. (3). Figure 3(a) is for g&gx. Here W and PD are
lines of first-order wetting and partial drying transition,
and E'C is a line of surface phase transitions. There is
complete drying at T, on line D. This phase diagram
should be compared to Fig. 1(c) for

~
U

~
& U, ; the ex-

ponents describing the behavior of W and PD near T,
are clearly different for the two cases so that E' is not a
conventional extraordinary point. Further, notice that if
T is increased to T, along the dashed line in Fig. 3(a),
the system goes from nonwetting to wetting to nonwet-
ting (given wetting boundary conditions); that is, there is
reentrant nonwetting.

Next, consider the case gv & g & gx of Fig. 3(b).
There is a line WT of first-order wetting transitions to a
wet phase W~, TE' is a line of first-order transitions be-
tween distinct wet phases W~ and W2 which have
diA'erent density profiles close to the substrate; and TO is
a line of first-order wetting transitions to W2. These are
found for wetting boundary conditions; with drying
boundary conditions there is a line of first-order partial
drying transitions PD, part of which is coincident with
the line TE'. There is complete drying only on line D at
T, . The only diff'erence between the film profiles along
TE' for the two kinds of boundary conditions is the pres-

FIG. 3. Phase diagrams in U~ tspace for
~

-U~ & U, and (a)
g&gx, (b) gy &g &gx, (c) g slightly less than gy, and (d) g
significantly smaller than gv. Details are discussed in the text.

ence of the "liquid-vapor" interface far from the sub-
strate in the case of wetting boundary conditions. Final-
ly, there is a line E'C, of first-order surface transitions.
The scale of the figure may be set by some typical num-
bers. For example U = —1.5 and g =0.08, 0 is at
U~ =0.2609, E' is at U~ =0.2529 and T is at
t = —0.0012 and U~ =0.2537 in MFT.

The points E' and 0 have some characteristics of ex-
traordinary and ordinary points. At E' there are two
coexisting phases, and at 0 there is but one with m„=0.
The curve TO is parabolic at O. However, the behavior
of TE' at E' is different from that near extraordinary
points. The crossover from Fig. 3(a) to 3(b) occurs at
g=gx where 0 crosses E' and becomes stable [cf. Fig.
2(b)]. The point X is a previously unknown type of criti-
cal point. The behavior of the wetting films for the case
of Fig. 3(b) is truly remarkable; if the temperature is in-
creased so that the system follows the dashed line up to
T„there will be both reentrant wetting and reentrant

non wetting.
As g is decreased toward gv, the point C, approaches

E', reaching it when g =gv. For slightly smaller g, E' is
gone and one has the phase diagram of Fig. 3(c) with an
Ising-like critical point CE. Further reduction of 6
causes CE to move across T so that this triple point is
gone; Fig. 3(d), which is essentially the same as Fig.
1(a), then emerges and persists as g is decreased.

We briefly summarize the essential characteristics of
the potentials for which the above new phenomena are
found. Specifically, to produce E' points there are three
requirements: (1) The eAective long-ranged potential
must be strong (~U~ —1) and favor wetting, (2) the
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first-layer coupling must be considerably enhanced
(D & —,'; i.e., g&0), and (3) the first-layer field U~ must
be repulsive (U~ —+2g). The latter two requirements
are necessary for E points in the more conventional
case' of Fig. 1. For a repulsive efI'ective long-range po-
tential there are analogous phenomena when wetting and
drying boundary conditions far from the substrate are in-
terchanged.

The results presented here make it abundantly clear
that to assume that calculated wetting phenomena for
short-ranged potentials will closely resemble the behavior
of real systems is imprudent. Altogether new phenome-
na can emerge for moderately strong long-ranged poten-
tials. Though these phenomena have been predicted on
the basis of MFT, we expect that Auctuations will alter
only details of the picture, as in the case of short-ranged
potentials.

There are as yet no experiments that clearly test pre-
dictions near T, . Recent work by Abeysuriya, Wu, and
Frank on mixtures of nitromethane and carbon disulfide
suggests that this system might be useful in that regard.
In an efI'ort to control U~ or, more generally, the short-
ranged part of AS they employ chemical treatment
(methylization) of the glass substrate. This appears to
give rise to a change from wetting to nonwetting near T,
as a function of the degree of methylization. We note,
however, that there is some controversy ' over the na-

ture of the long-ranged forces in the system.
We thank Carl Franck for informative discussions and

correspondence concerning his experiments. This work
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