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Nonlinear Plasma Dynamics in the Plasma Wake-Field Accelerator
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Excitation of nonlinear plasma oscillations by an intense ultrarelativistic electron beam is considered.
It is shown, by analytical solutions of the one-dimensional relativistic fluid equations, that under certain
conditions on the relative electron-beam and plasma densities extremely large longitudinal electric fields
can be generated in the beam's wake. This scheme is a nonlinear version of the plasma wake-field ac-
celerator, and is predicted to have advantages over the linear regime.

PACS numbers: 52.40.Mj, 52.35.Mw, 52.60.+h, 52.75.Di

Considerable interest has been stimulated in the last
few years by the promise of extremely high accelerating
gradients generated in plasma oscillations excited with a
phase velocity near the speed of light by either lasers or
bunched relativistic electron beams. The latter case,
termed the plasma wake-field accelerator (PWFA), has
been the subject of much theoretical investigation recent-
ly. ' The majority of the analysis has been conducted
under the assumptions necessary for linearization of the
fluid equations. This analysis allows calculation of the
longitudinal and transverse forces on both the driving
and accelerating beams. The transformer ratio, the ratio
of the maximum accelerating field behind the driving
bunch to the maximum decelerating field inside the driv-

ing bunch, is shown to be less than or equal to 2 for lon-
gitudinally symmetric beam current profiles. This limi-
tation can be circumvented by use of asymmetric
profiles, although some of the assumed profiles may be
difficult to realize experimentally.

Fully relativistic nonlinear longitudinal plasma oscilla-
tions have been considered by Akhiezer and Polovin,
Noble, and recently by Ruth et al. and Amatuni, El-
bakian, and Sekhpossian. The behavior of the oscilla-
tions in the absence of the exciting electron bunch is con-
sidered in detail in these references. The behavior of
these oscillations, for wave phase velocity vugh =c, can be
qualitatively described as follows ': For small-ampli-
tude waves the linearized solution is approximated; the
deviation ni of electron density n from its equilibrium
value no is sinusoidal with plasma frequency cop

=(4tre nn/m, )'i, as is the electric field. In the large-
amplitude case, the electron density wave steepens with a
large positive excursion in ni occurring for a short time
during the oscillation followed by a much longer time
during which n~ approaches —no/2, and the electric field
profile takes on a sawtooth appearance. The local oscil-
lation frequency is smaller than the plasma frequency
when ni is negative, mainly a result of the relativistic
mass increase of the plasma electrons. When ni is posi-
tive, the oscillation frequency is larger than the plasma
frequency because of the large local density of plasma
electrons, an eff'ect which opposes and overcomes the rel-

ativistic mass increase. The net oscillation period in-
creases with amplitude.

The free nonlinear oscillations are well understood; the
creation of such waves is the subject of this communica-
tion. We discuss herein the useful nonlinear attributes of
large-amplitude electrostatic plasma waves excited in the
wake of an intense ultrarelativistic electron beam.

The equations for nonlinear electron oscillations in a
cold, collisionless plasma with stationary ions have been
obtained previously in Refs. 5-8. If we include the
effects of an electron beam of density nb and velocity Pbc
on the plama, the fluid equations containing the electron
density, velocity v =Pc, and the electric E and magnetic
B fields are

nOPphn=
Pph P— (2)

d' 1 PhP p
(1 —P') '" ' P,h P—nb

no
(3)

Note that the phase velocity of the excited plasma wave
is determined by the velocity of the driving beam,
vph

=pbc. The electric field is purely longitudinal,
E =Ei, and B=0 for this driven electrostatic oscillation.

Since we are interested in these waves for use in a
high-energy physics accelerator, we wish to study the
fluid equations in the limit that pb 1, i.e. , the driving
beam is ultrarelativistic. With a change of dependent

Bp m, pc
Bt

+v Vp= —e(E+pxB), p=
(1 P2) I/2 '

V E=4tte(no —n —nb), V&&E= ——I BB
c

V B=0, V && B = —4tte (n p+ nb pb ) + 1 E
c t

'

where p is the electron momentum.
Choosing the direction of propagation to be the z axis

and assuming the wave motion is longitudinal and a
function only of the variable r =cop(t —z/vph), we obtain
the one-dimensional fluid equations:
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variable

1—x(z)—:
1+

and de fin i ng a =nb/n p, Eq. (3) becomes

(4)

bunch whose longitudinal density profile is flat over the
full beam length lb, i.e. , a is constant for 0 ~ ct —z ~ lb

and zero elsewhere. There is no oscillation for ~ (0, so
P=0 and the initial conditions are x(0) =1, x'(0) =0.
The first integral of Eq. (5) is then

1 1x "(z) =—
X

—1+2@ (5)

where the prime indicates diAerentiation with respect
to i.

1

We nov consider this equation with an electron-beam

[x '(z) ] =2(1 —a) —I/x —(1 —2a) x. (6)
Oscillatory solutions for x exist for a ( —,', and the turn-
ing points of x(z) occur at x(z) =1, I/(I —2a). These
points correspond to perturbed plasma electron densities
of n 1

=n —np =0, —2nb(1 —a). We obtain immediately
from the first of Eqs. (1) the electric field inside the
beam as a function of x(z)

E(x) = —(m, crop/e) (x') = ~ (mccop/e) [2(1 —a) —1/x —(1 —2a)x] 'l .

We now see that x is proportional to the electrostatic potential.
Integrating Eq. (6), we have

(7)

dx =2(1 —2a) ' E(+,k),

where E(+,k) is the incomplete elliptic integral of the
second kind and

+ =sin '[(x —1)(1 —2a)] 'l, k =2a.
y at zf =2+lb/kp, with the plasma wavelength defined
as Xp =27l' cc/ op,

The frequency of the driven oscillation is

~o = [+(I —2a) 'i'/2E(k)]ro, (i0)

E = ~ (m, ccop/e ) [2 y
—(x+ 1/x ) ] ' 2. (12)

The maximum accelerating field amplitude behind the
bunch is now

where E (k ) is the complete elliptic integral of the
second kind and k is as defined above. The frequency is
approximately co& for a((1 and decreases monotonically
with increasing a, approaching zero as a nears 2 .

From Eqs. (6)-(10), we see that when the beam den-
sity approaches one-half the plasma density, the plasma
oscillation period gets very large, and the electric field
near the turning point at n~ = —

nb (very large x) ap-
proaches the linear wave-breaking limit, E m, crop/e—:[np/(1 cm )] 'l V/cm. This is the largest electric
field obtainable inside any driving bunch of density
n~ (np/2, but is not, as will be shown subsequently, the
maximum accelerating field behind the bunch.

To take the most physically interesting and mathemat-
ically transparent case we explore further the condition
nb =np/2. Then Eq. (6) simplifies and is integrated to
find x as an imp', icit function of T;,

z=x' '(x —1)' '+In[(x —1)' +x' ']

In the limit of large x (in a long bunch), z becomes ap-
proximately equal to x.

The continuity conditions on x and x' allow the calcu-
lation of the oscillation amplitude and electric fields in
the wake of the bunch. For the homogeneous equation
(a =0) there exists from Eq. (6) an invariant, y = y
+ —,

' (x')2, where y=(x+x ')/2 is the Lorentz factor
of the plasma electrons and y is its maximum value.

The electric field behind the beam is thus, evaluating

E = (m, crop/e) (I —I/xf) ' '. (14)

Thus the transformer ratio is R =E+/E =xf' . The
transformer ratio approaches unity for a short beam and
becomes approximately equal to (2nlb/lp) ' for lb)) lp.

A numerical example is plotted in Fig. 1, with trans-
former ratio R =4 (xf =16). The beam charge is almost
entirely neutralized by the excess plasma charge, so the
electric field inside approaches an asymptote, as noted
previously, E m, crop/e. The plasma electrons con-
tinue to gain energy because of this nearly constant elec-
tric field, however, and the oscillation behind the bunch
is driven to large amplitude.

The significance of the case ny =np/2 is apparent from
this example. High transformer ratios are obtained
when the decelerating field inside the beam are as nearly
constant as possible. The perturbed plasma electron
density has a lower limit from Eq. (2) of —np/2. If
nb =np/2 then the beam can be at best charge neutral-
ized by the plasma electrons, and oscillatory behavior
does not occur. If nb ( np/2 then the electric field inside
the beam will oscillate; if nb ) np/2 the beam will not be
completely neutralized and the electric field grows

E+ = (m, crop/e ) (xf —
1 ) ' ',

where xf =x(zf) and we have used y =(xf+1)/2.
The maximum decelerating field inside the bunch is

given by
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E /

Il b ?1b

n, n,

without approaching an asymptote. In either case, the
variation of the decelerating field degrades the trans-
former ratio.

We now evaluate the effects of beam loading on the
plasma dynamics and the implications that they hold for
the inherent eSciency of the system. The plasma elec-
tron velocity should be negative at the beginning of the
accelerating bunch, as otherwise the plasma electrons
will work against the accelerating field, loading down the
wave. This implies that x must be greater than unity, as
can be seen by

np

1
—P

np 11+—
X

(is)

For the ideal case we take the electric field to be con-
stant over the accelerating bunch. Thus for an accelerat-
ing bunch starting at zo with x(ro) =xo, x'(ro) =xo
=const, which requires x"=0. From Eq. (5), we now
obtain an expression for the accelerating beam density
n„, as a function of h. T = T tp,

tip

From Eq. (12), we obtain xo =R + 1
—xo —1/xo,

where R is the transformer ratio. The efficiency g of en-

ergy transfer from a single decelerating bunch to a single
accelerating bunch can now be calculated,

xQ/[R (xQ ) )

xof ' ' d(ar)n„, (ar)
nb f drx'(r)

where a=xo/xo, „, the fraction of the maximum avail-
able field used for acceleration. This is identical to the
expression derived from the linear calculation. It is less
efficient to extract energy from the plasma wave at

0
~/2~

FIG. 1. Nonlinear plasma wave driven by beam of density
np/2. Perturbed electron density, driving beatn density, and
electric field plotted as a function of r/2~. Densities are nor-
malized to np, electric field is normalized to m, era~/e. For this
case x/ =16, R =4, and the maximum n i/np =143.

FIG. 2. Nonlinear plasma wave driven by beam of density
np/2, with x/=16, loaded at constant electric field by ac-
celerating beam with e%ciency g =0.5. Perturbed electron
density, driving and accelerating beam density, and electric
field plotted as a function of r/2' Den.sities are normalized to
n p, electric field is normalized to m, ceo~/e.

higher fields, as more energy remains in the wave after
the passing of the accelerating bunch. An example of a
driving bunch and accelerating bunch system is shown in

Fig. 2, with the same driving bunch parameters as in

Fig. 1.
There are some distinct advantages of using this re-

girne in the PWFA over the alternatives presently being
discussed. There is no singularity required in density
profile to provide the desired transformer ratio, unlike
the optimum linear case proposed by Bane, Chen, and
Wilson. The transformer ratio in our case scales ap-
proximately as the square root of the number of elec-
trons N, in the driving beam; this is the same dependence
as in the optimum linear scheme if the decelerating gra-
dient in the driver is held constant. The accelerating
gradients are inherently higher for a given plasma densi-

ty, as one is no longer constrained to work far beneath
the wave-breaking limit. This ameliorates the beam
emittance blowup due to multiple scattering in the plas-
ma and, along with the plasma nonlinearity, increases
the oscillation wavelength. Thus the accelerating bunch
is not required to be as short. The efrects that lead to
high transformer ratios are not critically dependent on
the condition nb =no/2 holding exactly, and an accept-
able density distribution should not be difficult to achieve
experimentally.

Some foreseeable difticulties with this scheme, as with
the PWFA in general, center on the three-dimensional
efI'ects, such as driver self-pinching, and transverse varia-
tion of accelerating fields. If the plasma is not driven by
a beam with a flat radial profile of radius much greater
than A.~ then the problem is no longer one dimensional.
Our analysis predicts almost total charge and current
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neutralization of the driving beam after a plasma wave-

length from the front of the beam. If this is also true in

the three-dimensional case the potentially detrimental
self-pinching forces of the driver can be diminished.

Problems not addressed in this treatment include ion
motion and the eA'ects of the finite electron temperature.
A large-amplitude plasma wave such as we are consider-
ing can accelerate thermal electrons out of the plasma
and trap them in its electrostatic potential well. These
electrons load down the wave and provide a mechanism
for saturation of the wave amplitude. For nonlinear
plasma waves of the type described here any plasma
electron with initial velocity component Poc parallel to
the wave vector will be trapped if Po) (2y ) '. In
our numerical example calculations indicate trapping is
insignificant if the plasma has an electron temperature
kT, «1 keV. Further investigation of all these stated
concerns is required, both theoretically and experimen-
tally.

One might also anticipate that the generation of these
large accelerating gradients requires a considerable
amount of beam charge in the driver. If we require the
beam radius to be equal to 2Xz, to keep radial eAects
small, an estimate on N for the numerical example in

Fig. 1 is N =2x10', where we have taken kz =1 mm
(no=10' cm ). This is a prodigious amount of beam
charge, considerably larger than current technology pro-
vides, but may be what is required to reach very high ac-

celerating gradients, which in this case are predicted to
be 12 GV/m.
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