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Without resort to any modeling, subgrid-scale eddy viscosity is computed from the results of high-
resolution (643 and 1283 grid points) direct numerical simulations of three-dimensional homogeneous,
isotropic, decaying turbulence. In these simulations the eddy viscosity peaks sharply at the cutoff' wave
number, in rough agreement with the results of Kraichnan. In addition, in the low-wave-number range
the eddy viscosity may be negative, contrary to the generally accepted concept of a subgrid-scale eddy
viscosity. Some possible explanations of this behavior are discussed.

PACS numbers: 47.25.—c, 47.25.Cg, 92.10.Lq, 92.60.Ek

As a result of the large number of excited modes in

high-Reynolds-number turbulent flows and to the in-
herent limitations of even the fastest modern computers,
it is possible to solve the Navier-Stokes equations numer-
ically only for low- to moderate- Reynolds-number
flows, Rq~ 0(10 ), where Rz is the Reynolds number
based on the Taylor microscale. For higher Reynolds
numbers, subgrid-scale modeling is often used with the
large-scale motions (i.e., for wave numbers

I
k

I
(k„k,

being the cutoft' wave number) computed explicitly from

the Navier-Stokes equations and the eAect of small
scales (with wave numbers

I
k

I
& k, ) approximated by a

subgrid-scale eddy viscosity model. ' The eddy viscosi-
ty models the process of the energy transfer from large
(I k

I
( k, ) to small (I k

I
& k, ) scales by increased dis-

sipation of the large scales. The purpose of this work is
to investigate the concept of an eddy viscosity using re-
sults of direct numerical simulations of homogeneous iso-
tropic turbulence.

The Navier-Stokes equations for the velocity field u„
! in spectral form,

[(r)/6t)+ vk ]u„(k) =( —i/2)P„,„(k)„dpu, (p, t)u„(k —p, t), ik„u„=0,

lead to an equation for energy amplitudes,
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where

I
u(k) I

=u„(k)u„*(k), P„,„(k)=k„(6„,—k„k,/k )+k, (6„„—k„k„/k ),

(2)

and the summation convention is assumed. The bracketed term represents nonlinear energy transfer and can be written
as follows:

T(k) = [T(k) —T (k)]+ T (k), (4)

where

T(k) =Im u„*P„,„(k)„d'p u, (p)u„(k —p),
T (k) =1m u„*P„,„(k) "d'p u, (p) u„(k —p), I

k I, I p I, I
k —

p I «, .
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T(k I k, ) —=4trk (T(k) —T (k)), (IIa)

E(k)—:4trk' —,
' (Iu(k) I

~). (gb)

(. . . ) denotes averaging over thin spherical shells of ra-
dius k, and v(k

I k, ) is the eddy viscosity. (In the re-
stricted sense defined here, the term "eddy-viscosity
modeling" used in this paper is also denoted asT(k I k, ) = —2v(k I k, )k E(k), k ~ k„ (7)

In Eq. (6) all wave numbers lie below the prescribed
cutoft' wave number k, . Since T (k) represents energy where
transfer from the mode k to all modes with wave num-
bers less than k„T(k) —T (k) represents energy ex-
change between the mode k and two other modes such
that at least one of them lies above the cutoA k, . In an
eddy-viscosity approach, one attempts to model this term
by the following formula:
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"subgrid-scale modeling" in the literature. ) In the iso-
tropic average of Eq. (2), the term in Eq. (7) may be
lumped together with the dissipation term giving a closed
equation for the energy spectrum E(k, t) determined on
wave numbers k ( k, once the form for v(k

~
k, ) is

determined. Similarly, in the Navier-Stokes equations
(1), the eA'ect of small scales may be modeled by the
term v(k i k, )k u„(k), giving a closed equation for the
large scales (i It

~

& k, ).
The properties of the eddy viscosity v(k

~
k, ) were in-

vestigated by Kraichnan' in the framework of the test
field model and by Chollet and Lesieur in the frame-
work of the eddy damped quasinormal approximation.
For an energy spectrum with an infinite inertial range,
these theories predict a form for the normalized eddy
viscosity, defined by

v,+(k
i k, ) =v(k

i k, )/[E(k, ) ' k, ' ] (9)

2. 0

which is included in Figs. 1 and 2. It is constant for
k (0.4k, and rises sharply in the vicinity of the cutofI
k„ indicating the importance of the local interactions.

In this paper, use is made of the following observation
to compute the eddy viscosity without any modeling. If
the accurately resolved velocity field u„(k, r) is known
from direct numerical simulations, the eddy viscosity (9)
may be evaluated for a particular truncation wave num-
ber k, by employing formulas (5) and (6) and definitions
(7) and (8).

Given the velocity field u„(k), the convolutions in for-

mulas (5) and (6) are most eA'ectively computed by use
of a fast-Fourier-transform algorithm on the convolved
fields, computing the local products in physical space,
and transforming their product back to spectral space.
This method requires 3 orders of magnitude less work
than direct summation for the 64 field (4 orders of
magnitude for the 128 field). The numerical code was
checked against exact relations obtained by assuming
Gaussian forms for the velocity field, which allow analyt-
ical evaluation. Direct numerical simulations of horno-
geneous, isotropic, decaying turbulence were performed
for difterent initial conditions on 64 and 128 meshes,
and the eddy viscosity was evaluated from velocity fields
at diAerent times of evolution [corresponding to
prescribed Reynolds numbers R~(t)] and with diAerent
wave-number truncations k, . Runs F64E, F128D, and
F128L (see Table I) are representative of the seven
simulations that were performed and studied in detail.

Runs F64E and F128D were initialized with a random
velocity field with an energy spectrum

E(k, 0) =16(2/x) ' t pkz k exp[ —2(k/k ) ] (10)

which is peaked at k =k~. For the spectrum (10) the
Taylor microscale is X =2/k~, the internal Reynolds
number is Rg=2t'p/(vk~), and tp is the rms turbulent
velocity. Run F128L was started with an initial spec-
trum taken from the laboratory measurements of
Comte-Bellot and Corrsin (Table 2 in their paper; data
at nondimensional time rUp/M =385). The unit of
length was changed so that the lowest measured wave
number k is always 1, with the corresponding rescaling
of all physical quantities obtained by substituting cen-
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FIG. 1. Eddy viscosity computed from a direct numerical
simulation of homogeneous, isotropic turbulence for case
F12IID4 (cf. Table 1). Two different wave-number cutoffs, k„
are shown: squares, k, =20; triangles, k, =30; lozenges,
Kraichnan's theory.
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FIG. 2. Same as Fig. 1 but for case F128L5: squares,
k, =15; triangles, k, =30; lozenges, Kraichnan's theory.
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TABLE I. Relevant parameters for the simulations. (5 is the velocity derivative skewness and N is the number of modes; the
suffix "0"on the run number refers to the initial conditions. )

Run

F64EO
F64E1
F64E2
F64E3

84
46.5

36.6
27.6

0.84
0.53
0.47
0.44

Qr p

1

0.87
0.78
0.63

k max

32 64 0.01

kp

2.38

F128DO

F128D4
F128D6

84
40.3

29.7

0.42
0.24
0.22

2
1.67
1.34

64 128 0.01 4.76
0.48
0.48

0.0
0.322
0.554

F128LO
F128L1
F128L2
F128L3
F128L4
F128L5

36
34.3
29.8
25.7
23.0
20.7

0. 12
0. 12
0. 12
0.14
0.16
0.18

0.45
0.44
0.37
0.28
0.22
0.17

64 128 0.0015
0.37
0.36
0.41
0.45
0.48

0.0
0.303
0.607
1.187
1.921
2.892

timeters for a[L], where [L] is the new unit length and
I cm =a[L]. The most notable diAerence between these
two initial conditions is the rapid decrease of the spec-
trum (10) for large wave numbers k when compared
with the experimental spectra, which usually can be
fitted by less rapidly decreasing curves for large wave
numbers. Some of the main parameters for the numeri-
cal simulations are gathered in Table I.

The behavior of normalized eddy viscosities (9) for a
typical case initialized with the spectrum (10) is shown
in Fig. l. A general feature of these computed eddy
viscosities is their steep increase in the vicinity of the
cutofT k, . The viscosity term v,+(k

~ k, ) grows an order
of magnitude as k ranges from 0.7k, to k, . This eA'ect is

consistent qualitatively with predictions of Kraichnan's
theory for the subgrid-scale eddy viscosity and indicates
the importance of the local interactions at the cutoA'.

The value of the unnormalized viscosity v(k
~ k, ) is usu-

ally comparable to the molecular viscosity in this range
of wave numbers and Reynolds numbers.

Another feature observed in most of our results is neg-
ative eddy viscosities for k & 0.5k, with values generally
an order of magnitude less than the molecular viscosity.
Physically, negative eddy viscosity means net transfer of
the energy from the wave numbers above the cutoft to
the wave numbers below 0.5k, . This feature contradicts
the physical picture leading to the eddy-viscosity con-
cept. This concept is based on the notion of the effective
dissipation at the large scales via the energy transfer to
small scales, in much the same way as the molecular
viscosity is responsible for dissipation of hydrodynamic
motions that occur at scales much greater than the mean
free path of molecular motions.

The eddy viscosities for the experimental spectrum
(Fig. 2) show behavior similar in many respects to that
described above. For low cutoft wave number k„howev-
er, they are no longer consistently negative at low wave
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FIG. 3. The transfer spectrum for the case F128L5. The
wave-number cutoft' for the truncated mesh is k, =30.

numbers k. But even in this case, the computed values
of the eddy viscosity are significantly below Kraichnan's
prediction (see Fig. 2). The averaged transfer spectra
(T(k)) and (T (k)) on full and truncated meshes are
shown in Fig. 3.

There are a few possible explanations for discrepancies
between our results and Kraichnan's theory of the
subgrid-scale eddy viscosity. Kraich n an assumed an
infinite inertial range in obtaining his theoretical predic-
tions, and in our calculations the Reynolds numbers of
the turbulence are too low to obtain the inertial range
behavior. In fact, the expression for the eddy viscosity
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for k &(k, derived by Kraichnan, '

v(k i', ) = —„J~„0~~k 5E(q)+q dq
I dE(q)

C q

(0&zq is the characteristic time of triad interaction), indi-
cates that it may be negative if the energy spectrum falls
off faster than k for k beyond k, . We found that in

our simulations the negative eddy viscosities were con-
sistently associated with such behavior of the spectra for
large wave numbers. Moreover we have only a limited
wave-number range in our calculations, with the maxi-
mum wave number k,„not exceeding 64k;„ in 128
simulations, where k;„ is the minimum wave number.
Therefore, the separation of scales in our simulations

may be too small to expect the asymptotic high-
Reynolds-number results to be valid. Departures from
the Kraichnan theory were also observed by Chollet and
Lesieur when the cutoff wave number k, was very close
to the peak in the energy spectrum (Fig. 3 in their pa-
per).

The results of our work show that for low Reynolds
numbers the eddy viscosity in homogeneous turbulence
may be negative for k ~0.5k, . The asymptotic analysis
of the eddy viscosity using the inertial range spectra
made by Kraichnan is not valid in this case. However,
the eddy viscosity in our results for k =k, behaves quali-
tatively in the same manner as in Kraichnan's analysis,
indicating that the mechanism of the local transfer of en-

ergy in homogeneous turbulence is qualitatively the same
at low as well as at high Reynolds numbers. Therefore,
the analysis of the local energy transfer at low Reynolds
numbers via direct numerical simulations may prove to

be useful also for high- Reynolds-number flows. The
discrepancy for k ~ 0.5k, between our results and
Kraichnan s analysis, which assumes an infinite inertial
range, indicates the possibility of errors when subgrid-
scale models derived from the inertial range spectra are
used for flows in which the Reynolds numbers or spatial
resolution is too low to exhibit a significant inertial
range. This is important since many laboratory and en-
gineering flows have Reynolds numbers R&=100 to 200
and fall into this category. For geophysical flows with
Rz =O(10 ), the existence of the inertial range spectrum
is well documented and Kraichnan's asymptotic eddy
viscosity may be applicable.
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