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String Theory as the Kahler Geometry of Loop Space
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We argue that the Kahler geometry of the loops on space-time describes bosonic string theory. The
Kahler potential is the dynamical (field) variable of closed-bosonic-string theory. The equation of
motion for this field is that a generalized Ricci tensor vanishes. Loops on flat space constitute a solution
only in 26 dimensions.

PACS numbers: 11.17.+y

String theory' so far lacks a good geometric and non-
perturbative formulation analogous to the Riemannian
geometry of space-time in general relativity. String field
theory is a natural approach to a nonperturbative formal-
ism.

An open string has a massless spin-1 excitation. Open
strings, therefore, seem to be a source of matter fields.
Closed strings, on the other hand, have a massless spin-2
excitation, and thus seem to be associated with gravity.
In general relativity, gravity is described by the Rieman-
nian geometry of space-time. In string theory, space-
time is replaced by the space of loops in space-time. The
space-time manifold itself is recovered by consideration
of the constant loops —this is the long-wavelength limit
of string theories in which we expect to recover conven-
tional field theories. It is natural to expect then that the
open-string field describes the propagation of matter and
the closed string describes the geometry of loop space.
The loop space of real space-time is a complex
differentiable manifold. The complex analogs of
Riemannian manifolds are those in which vectors are
transformed by the unitary group upon parallel transport
(this preserves both the metric and the complex struc-
ture). These are the Kahler manifolds.

The fundamental object of Kahler geometry is a real
scalar field K, the Kahler potential. The dynamical vari-
able of closed-string theory must then be a real scalar
function in loop space. Geometrical considerations will
lead us to a nonlinear equation of motion for this field
which is the analog of Einstein s equations. This equa-
tion of motion is given by the vanishing of a certain gen-
eralization of the Ricci tensor. Flat loop space is a solu-
tion of this equation of motion only if the space-time di-
mension is 26, so that we recover known results at zeroth
order. Our work gives, however, a nonperturbative equa-
tion of motion for closed-string theory, and may have
solutions very difl'erent from 26-dimensional flat space.
The nonlinearity of the equation naturally introduces in-
teractions.

We introduce now the ingredients of our approach to
string theory.

Let LR " be the space of maps of the circle into

co(u, v) = J u" (cr)v'"(o)q„„do,1 (3)

with the flat Minkowski metric g"'. The corresponding
Kahler potential is

Ito= g n
I x. I

'
n 1

The wave function of the open string is an analytic func-
tion on XR " (i.e., it is independent of x„ for n )0).
The wave function for the closed string @ is an arbitrary
real function on LR" ".We want to think of this as a
perturbation of the "flat" Kahler potential Ko. It will, of
course, only be the sum K =Kp+ + which has true
geometrical significance.

The strings we have considered so far (elements of

Minkowski space R ". The elements of LR "are
functions x on the interval [ —rr, tr] satisfying x( —rr)
=x(rr). We will also consider ARd ", the subspace of
LR "given by loops beginning and ending at a fixed
point, the origin. LR " may be interpreted in two
ways. It is the configuration space for closed strings and
it is the phase space for open strings. The identification'

r

(y+y')(cr), 0~ o ~ rr,
x(a) ='

, (y+y')( —a), —rr ~ cr ~ 0,

where y = [O, rr] R " is the open-string coordinate,
makes this explicit.

0,R "has the structure of a complex manifold. To
see this, make a Fourier expansion of x E AR

x (cr) = g x„e'" —g x„e'"
nap n~p

with xn =x „. The complex structure J is defined by

(Jx)(a) = —i g sgn(n)(x„e'" —x„e'"'). (2)
nap

LR " is actually a family of complex manifolds la-
beled by the zero mode xp'. LR "= ~R
x R ". It is at this point that we first see the appear-
ance of Kahler geometry. AR " is a Kahler mani-
fold, with the Kahler form
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XRd ") have a specific parametrization. Physical
string amplitudes should be independent of this paramet-
rization —in other words, invariant under the group of
diA'eomorphisms of the circle DiAS'. Only the complex
structure provided by the map J is aAected by actions of
DiAS '. It is easy to see that pure rotations (S ') do not
change the complex structure. The space of all complex
structures of LR " transformed into each other by
DiffS ' forms a manifold At =DiA'S'/S'. This mani-
fold thus plays a crucial role in string theory.

In string theory it is well known that the ghosts which
arise in covariant quantization are an essential element.
We should consider then ghost excitations, in addition to
the bosonic excitations. To treat these ghosts correctly
one must specify a vacuum state —the filled Dirac sea.
We digress a little to outline this point. Let V be the
one-particle Hilbert space of a fermionic system, with
positive-energy states (V+) and negative-energy states
(V ), i.e., V = V+ S V . The vacuum state is given by
the (infinite) wedge product of all the basis elements of
V . In other words, the vacuum is a one-dimensional
vector space given by the densities of weight one in V
which we denote by I . For the ghosts of string theory,
the one-particle Hilbert space can be identified with the
Lie algebra of DiAS', since they transform under the ad-
joint representation. I has been studied in this context
in the mathematical literature. ' Frenkel, Garland,
and Zuckerman have given a rigorous account of
Becchi-Rouet-Stora- Tyutin (BRST) (covariant) quanti-
zation by studying the associated cohomology. In their
work, motivated by that of Banks and Peskin, ' a puz-
zling similarity to Kahler geometry was noted. It can be
shown" that the Kahler manifold lR=DiftS'/S' has an
invariant cohomology which is the BRST cohomology.
We turn now to a more detailed study of At.

The techniques for the study of such quotient spaces
(which are called "flag manifolds") are well de-
veloped. We proceed here by use of the theory of loop
groups as a guide. ' We show next that W is a homo-

I-m =I- —m.

(This is in fact the complexification of the Lie algebra of
DiAS'. Even though DiA'S' is semi-simple, it has no in-
variant metric, since the Killing-Cartan metric diverges. )
We can identify a tangent vector v to M at the origin as
a linear combination of L 's for m&0:

c mLmi L'm —v —m.
mwO

A complex structure at this point is defined by

(Jv) = —i g sgn(m)c L
m~O

(7)

Given this, J is defined at all points of W by left transla-
tion. To show that this complex structure is integrable,
we must show that the commutator of two vectors of
type (1,0) is also of type (1,0). At the origin, a vector of
type (1,0) is a linear combination of L 's for m & 0. It
is clear that these vectors are closed under commutation.
[Since the vector fields L are themselves not left invari-
ant, L with m & 0 are not of type (1,0) away from the
origin. It is very complicated and unnecessary to find an
explicit expression for J away from the origin. l

We have established, then, that Af is a complex mani-
fold. Homogeneous Kahler forms co on A, are deter-
rnined by their value at the origin. The condition that m

be closed implies that

geneous Kahler manifold which admits a two-parameter
family of homogeneous Kahler metrics.

Since A, is a coset space, DiAS' acts transitively by
left translations on A, . All calculations on W, therefore,
can be reduced to algebraic calculations on the tangent
space to At at a fixed point (the origin). The tangent
space to A, at the origin can be understood in terms of
the Lie algebra, DiffS '. Since DiAS ' acts on A, there
are vector fields on Ai satisfying

[L,L„j=(m —n)L +„, m, n E Z,

(dc@)(L,L„,Lz) = —co([L,L„],L&) +cyclic permutations =0.

It is well known' that the most general solution to this algebraic equation is

co(L,L„)=(am'+bm)S

For co to be invertible, either a =0, b&0, or a&0, —b/a ~n 2 with n E Z.
Thus, we have found the most general homogeneous Kahler metric on A, . The case a =0 has been considered as an

inner product on the algebra in the literature, but we will see that this is a poor choice in geometry.
We compute now the Riemann tensor of this manifold. Again, all computations can be reduced to algebraic ones at

the origin. We find

R(L ,L„)L-~= ~ —e—(p—m)(p+m) a(p —m)'+b(p —m)
ap +bp

+ (p+ 2m) —2mp '6 „cigL —, (10)a +b
a(p+m) 3+b(p+m)
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where e is the Heaviside step function. Of particular in-
terest in Kahler geometry is the Ricci form, Ric(L,L„),
which is given by a trace over p of R. On an infinite-
dimensional manifold the trace may not, in general, con-
verge, and the Ricci form may not then exist. We find
here that for a&0, the Ricci form is well-defined and
given by

Ric(L —,L„)=( ——",, m + —,
' m)8

This is our first important result. For a =0, the Ricci
form is divergent and hence ill defined. The Ricci form
is independent of a and b. The coefficient of m is easily
shown to be —,

' for b =0, but is in fact independent of a
and b. ' The fact that the sum of the diagonal elements
of the curvature tensor converges is the consequence of a
remarkable set of cancellations —no regularization is
used in the calculation of the Ricci form.

Note particularly the appearance of —26 in the ex-
pression for the Ricci form. —,', m 6 „ is a generator of
the second cohomology ' of A, . We have found that the
Ricci form contains —26 copies of this generator. In
finite dimensions, the Ricci form represents the first
Chem class of the tangent bundle. With the appropriate
generalization to infinite dimensions, we can view the
Ricci form as the first Chem class of JN, . (Dift'S'/S' is
contractible, so that we would expect its cohomologies to
vanish. But we are dealing with the cohomology of
forms invariant under DiffS, which is nontrivial. We
are not aware, however, of a rigorous definition of Chem
classes for the type of manifold we are considering. ) We
note again that the cohomology class of the Ricci form is
independent of the choice of metric, as it should be. An
intuitive explanation for the negative sign of the curva-
ture is that Att contains SL(2,R)/U(1), which is the
Bolyai-Lobachevsky space with negative curvature.

The nonzero ghost modes can be identified with vector
fields on the manifold AL. I then represents the ground
state of the ghosts. The Ricci tensor we have computed
has a special significance in this context. To be able
to specify a reparametrization-invariant ghost vacuum
there must exist a covariantly constant tensor density (I,
or the anticanonical line bundle, which represents the
vacuum). This requires the Ricci tensor to vanish. In
our case, we see then that no such invariant vacuum
state exists. In fact, the Ricci form of a Kahler manifold
is the curvature of the covariant exterior derivative on
densities, a E I,

V'2a =Ric p, a.

To resolve the present obstruction we can consider the
product of I with some other vector bundle whose curva-
ture is +26. Such a vector bundle is provided by open-
string theory. To see this, consider the bosonic Fock
space % of open strings in d dimensions as the space of
analytic functions on XR ". The inner product of

two functions in loop space is defined as

Fp(L, L „)=( —,'2 dm —Pm)8 „l.
It is to be stressed that the curvature matrix Fp(L
L-„) is proportional to the identity matrix (this is not
true for the tangent bundle of At). We note that this
curvature is precisely the contribution to the Virasoro
commutation relations from the anomaly. p is deter-
mined by the ordering prescription for the Virasoro
operators on X.

Now the product bundle Z over AI with fiber %&I
has a covariant derivative Do with curvature

Rp(L, L „)=D,'(I. ,I. „)
d —26 m'(-,' —p)m 6 (is)

For d =26 and P =
6 we see that

Rp(L, L —„)=0. (i6)

We have an interpretation, then, of the anomaly cancel-
lation of string theory as the vanishing of curvature. ' '
In the critical dimension we see that one can define a
reparametrization-invariant vacuum for the full Hilbert
space of bosons and ferrnions (ghosts). The vacuum is
provided by the covariantly constant zero-form, even
though such a vacuum cannot be defined for the bosons
or ghosts separately.

What we require for a theory of closed strings is an
equation of motion for the Kahler potential in loop
space. We note that the only place where the back-
ground geometry of LR " entered was in the
definition of the inner product in S. Let us now general-

(f,g) =J dxo Q dx„dx„fge
n 1

where Ko is the flat Kahler potential defined earlier. It
may be verified that this agrees with the usual inner
product. ' (Since R " has a Lorentzian metric, K is
not positive. So the integral has to be defined by an ana-
lytic continuation. As a result, the norm on % is not pos-
itive. But this is the usual indefinite norm of covariant
quantization. )

Now the definition of X depends, as usual, on the
choice of the complex structure J and the Kahler poten-
tial K on LR ". Let us hold K fixed at Ko and con-
struct a holornorphic vector bundle Y by varying J all
over AL. At each point in JR we attach the Fock space
constructed from the complex structure defined by that
point. 8 carries the well-known projective representa-
tion of DiAS' through the Virasoro operators. There is
a natural holomorphic connection on Y that leaves the
inner product in % invariant. ' We can calculate the
curvature (field strength) of this connection by methods
similar to those we used previously. " We find that the
curvature of the covariant derivative in Y is

537



VOLUME 58, NUMBER 6 PHYSICAL REVIEW LETTERS 9 FEBRUARY 1987

ize the Kahler geometry of LR " to one with an arbi-
trary Kahler potential K(xo, x„,x„). Actually, we are
thinking of LR " as a family of complex manifolds,
XR "=IIR "&R ". K(xox„,x„) is a family
of Kahler potentials on AR ". The inner product on
8 is now defined as

We have benefited very much from conversations with
Dan Freed. We thank also A. Ashtekar, K. Pilch,
N. Warner, and B. Zweibach for discussions. This work
was supported in part by funds provided by the U.S.
Department of Energy (D.O.E.) under Contract No.
DE-AC02-76ER03069.

(f,g)tr =„dxo Q dx„dx„detroe fg,
n 1

(17)

where co =99K is the Kahler form. This in turn changes
the definition of D, the covariant derivative on Z, and its
field strength. Let R~ be the curvature associated with

K. For K =Ko, we have already computed this curva-
ture. The natural generalization of the Ricci tensor is

the curvature of the vacuum space of the combined
Bose-Fermi system Vxt, where Vt X is the subspace of
constant functions on Q, R ". Consider then the sub-
bundle of Z with fiber Vxt. The curvature of this line
bundle (a generalized Ricci form) will be donated Richer.

We postulate that the equation of motion of closed-string
theory is that

Ric~ =0.

Our earlier results show that K =Ko (flat space) is a
solution of this equation in the critical dimension d =26.
Interactions arise because the curvature Ric~ depends
nonlinearly on K. This is analogous to Einstein's equa-
tions. It is now of great interest to find new solutions to
these equations.

The next obvious step in the program we have outlined
is to find the solution to our equation of motion for small
fluctuations about flat space.

The idea of considering the space of all complex struc-
tures is reminiscent of twistor theory. ' ' An approach
to siring theory also based on complex geometry has
been proposed by Friedan and Shenker. ' It is of in-

terest to know the relation between the "universal
Teichmuller space" with which they work and
Die'S 'iS '.
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