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The covariant description of massless bosonic free particles in space-time of any dimensionality which
carry arbitrary representations of the Lorentz group is presented.
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The covariant description of bosonic free particles car-
rying arbitrary representations of the Lorentz group is a
rather old problem which started with the classical work
of Fierz and Pauli' in which the representation (2) of a
massive particle was studied. Until last year only the
descriptjons of a few types of representations were
known. These types were the representations (n) and
(1, 1, . . . , 1) for both massless and massive particles,
and the mixed-symmetry ones, (2, 1), (2, 1,1), (2,2), and
(n, I), also for both massless and massive cases. A
good review of the progress made up to 1980 can be
found in the work of Curtright. More recent papers
contain some related work on the subject. The situation
changed drastically since last year. With the advent of
string field theory' the covariant description of any rep-
resentation for the massive case was obtained. From the
well-known fact that covariant massless and massive
descriptions are related by compactification of one of the
dimensions one could in principle obtain also the com-
plete description for the massless case. However, the
kind of anticorrtpacttftcation that should be involved in
such a process is a tedious and inelegant procedure
which does not teach us anything about the rich physics
contained in the description of massless particles. One
would certainly prefer a description based on the princi-
ple of gauge invariance. The importance of gauge invar-
iance in dealing with the covariant formulation of parti-
cles carrying arbitrary representations of the Lorentz
group was first pointed out by Curtright in Ref. 3.

Recent work"' has shown an increasing interest in
the covariant description of free particles carrying arbi-
trary representations by use of the principle of gauge in-
variance. In Ref. 11 the complete covariant description
for representations of the type (2, 1, 1, . . . , 1) was
presented. In Ref. 12 the principle of gauge invariance
was stated for any representation, the ghost content was
identified with complete generality except for trace con-
ditions, and the complete description was presented for
representations of the type (2, 2, . . . , 2, 1, 1, . . . , 1). The
methods presented in Ref. 12 cannot be extended easily
to the general case, because for representations corre-
sponding to Young tableau (YT) with more than two
columns gauge invariance implies certain trace condi-
tions on the gauge parameters. In addition, for represen-
tations corresponding to YT with more than three

columns the field itself must obey certain double-trace
conditions in order to have the right number of physical
degrees of freedom. These facts are known from the
description of the completely symmetric cases. Their
necessity when dealing with mixed symmetries follows
from simple counting of the ghost content present in
Ref. 12.

In this note, I present a solution to this long-standing
problem which is inspired by methods utilized in string
field theories. I suspect that this formulation may be a
manifestation of the existence of a new class of theories
which involve interactions among fields of any represen-
tation. The simplicity and uniqueness of the formulation
is very appealing. In the past years we have learned that
it seems that in order to formulate consistent interacting
theories involving higher-spin particles one needs to in-

troduce all the representations. The fact that there ex-
ists a compact form to deal with all the bosonic represen-
tations may be an indication that what is presented in

this note is an operator representation of the free part of
a new class of theories which involve massless particles
of any spin.

Before presenting my analysis I will review the princi-
ple of gauge invariance as stated in Ref. 12. Given an
arbitrary representation of the little group of a massless
particle in d dimensions, (a~, a2, . . . , a~), I will postu-
late that the covariant description can be formulated
with a field 2 whose space-time indices have the struc-
ture of the YT corresponding to the irreducible represen-
tation of GL(d) [a~,a2, . . . , a~]. Additionally, I postu-
late that the action of this field is invariant under gauge
transformations whose gauge parameters have an index
structure corresponding to all the YT that one can make
by removing one box from the YT of the original field.
In this formalism all the representations of the little
group which are described are irreducible except the
self-associated ones, which split into irreducible self-dual
and anti- self-dual parts.

The gauge transformations postulated above can be
expressed very simply by use of the context of bosonic
string fields. Consider a vector field

~
A(x)) in the Fock

space spanned by a set of N covariant oscillators a„'
which satisfy
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where yl"'=(1, —1, —1, . . . ,
—1) with d —1 entries —l.

which are just the coeScients of its expansion:
The vector field

I
A(x)) represents a collection of local fields

I
A(x)&=&(x)

I
)+A„(x)amt"

I
)+ —,

' G„,"(x)a "a„t'
I
)+ —,

' 4„„"(x)at"a„t"
I
)+. . . , (2)

where
I

) represents the vacuum. For N ) d all the rep-
resentations appear in the expansion (2). In this frame-
work gauge transformations can be formulated in the
following way. Consider, V collections of gauge parame-
ters represented by the vectors

I D„(x)), 1 ( n ~ N. The
gauge parameters are the coefficients of its correspond-
ing expansions:

(3)

Gauge transformations, as postulated above, are generat-
ed by our defining the transformation of the vector field

I
A(x)) by

6I A(x)) =at"6„I@ (x)&.

Identifying the coefficients in the expansions of each side
of Eq. (4) one can observe that in fact the local fields of
Eq. (2) transform properly under gauge transformations.

Our next task is to construct the vector-field equation
which I A(x)) must satisfy. A discussion based on the
field equations appears to be much simpler. To find the
vector-field equation involves the construction of an
operator 6 such that

GIA(x)) =0,

with the following properties: (a) 6 must be a second-
order diflerential operator with respect to the space-time
coordinates x"; (b) if we normally order the terms enter-
ing into 0, each term must have the same number of
creation and annihilation operators; (c) the terms enter-
ing into 6 cannot be operators that involve the Laplacian
and one or more pairs of creation and annihilation opera-
tors; (d) the vector-field equation (5) must be invariant
under the gauge transformation (4). Property (b) en-
sures that there is no mixing between diferent represen-
tations. Property (c) avoids terms which are superfluous.
Suppose that we go along with those terms and we work
out the field equations of the local fields. One would
have at least two types of terms originating from those
unwanted operators: terms with the Laplacian acting on
traces of the local fields and terms with the Laplacian
acting on the local field itself. The terms of the second
type could be combined with the terms resulting from
the operator with no creation and annihilation operators,
the simple Laplacian (that necessarily has to be there if
one wants to describe scalar fields properly). The terms
of the first type could be expressed in terms of operators
which do not involve the Laplacian by use of the field
equations: Take a trace of the field equation, solve for
the Laplacian acting on that trace, and substitute it back
in the full field equation. As I will show below this con-

dition makes the formulation extremely simple. This
condition is responsible for the nonhermiticity of 0. The
four properties above determine 0 uniquely up to overall
normalization. I show now how this construction is
made.

Let us classify the possible normal-ordered terms
entering into 0 by the number of creation operators
(that I will call degree) that it contains and then by the
inequivalent ways that the contraction of their indices
can be arranged. In this classification, there are one
operator of degree zero, the Laplacian, I:I; one of degree
one, a„t'aPB, tip,

. seven of degree two,

am an aman, y&a~p am an aman, yrla tip
ta fp y a a fa ty p

am am an an, y tlat)p~ am an a,m yna) r)atp|tp y t& 'ty p

am an, yamant)atlp~ am am anan, yt)at)pi
ty 't a p fa ty p

am am, yan an tlat)p~py f a p

29 of degree three, which we do not list; etc.
The first important observation to be made is the fact

that after a gauge transformation in (5) each term of 0
gets one extra creation operator. When this operator is
commuted to the left to obtain normal-ordered terms two
types of operators are generated. Suppose that we start-
ed with an operator in 6 of degree n. This operator gen-
erates normal-ordered operators with n creation opera-
tors and n —

1 annihilation operators and a remainder
which consists of n+1 creation operators and n annihila-
tion operators. Clearly, for the case of degree zero (the
Laplacian) there is a remainder only. If we perform a
gauge transformation in (5), cancellations can occur if
the coeScients of the terms entering 6 are arranged in
such a way that the remainders of the operators of de-
gree n are canceled by the nonremainders originating
from the operators of degree n+1. We will analyze how
the coefficients can be arranged starting with the opera-
tors of lowest degree, i.e. , the Laplacian &. This fixes the
overall normalization. To cancel the remainder generat-
ed from this operator one needs to introduce the operator
of degree one, a„~'aPB,Bp, with coefficient 1. To cancel
the remainder generated from this operator one needs to
introduce the seven operators of degree two listed in (6)
with arbitrary coe%cients. The nonremainder terms
generated from these operators after the transformation
(4) are the seven inequivalent ones (which are in fact the
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complete set which could appear)

am'a„amyl, 8&t)y, an'am"am, y t)Q

collection of second-generation gauge parameters. The
vectors

~
6„(x)& are such that

~
A(x)& remains invari-

ant under a double gauge transformation. From (4) and
(11) this implies that the vectors

~
6'„(x)& must satisfy

the constraint

a ~ "a„~"
~

A'„(x )& =0, (i2)
am am an, y t)a am an yam&t)„

t~ ty ty t

yi,pa) ag
~
@p)(x)& =0, (9)

where the symmetrization comprises the three indices m,
n, and p. Condition (9) involves traces of the local fields
which is what one expects to find. In summary, gauge
invariance forces the gauge parameters to be constrained
according to (9) and singles out the operator 6 to be

(io)

In describing massless particles one has to take into
account the difrerent generations of gauge invariance
that the theory possesses. In Becchi-Rouet-Stora-Tyutin
language this corresponds to the diA'erent generations of
ghosts. More than one generation is necessary when one
treats representations which correspond to YT with more
than two rows. In the formulation introduced in this
note there is a very simple way to deal with higher-
generation gauge parameters. The gauge transformation
of the first-generation gauge parameters is given by

6~ D„(x)&=at"t)„~ B„(x)&,

To cancel the remainder from the operator of degree
one, it is necessary to arrange coefficients in such a way
that only the first operator in (7) survives with coefficient
—1. This generates an inhomogeneous linear system of
equations for the coefficients of the operators listed in
(6). One can verify that the system has a unique solu-
tion. The solution is such that only the first operator in

(6) enters into 6, with coefficient —, . The next step is to
study the possible cancellation of the remainder from the
only operator of degree two that enters O. This
remainder is

2 am an ap aman, b~ar)pr1y
ta tP ty

To cancel (8) one needs to proceed with the same
analysis applied to the operators of degree three. As was
mentioned earlier, there are 29 operators of this degree.
The variation of (5) under the gauge transformation (4)
produces 40 inequivalent operators from the ones of de-
gree three and it turns out that there is no way to cancel
the operators of degree two. Gauge invariance forces us
to stop here and to demand the following constraint for
the gauge parameters:

which tells us that not all the components in ~6„(x)&
are independent. This fact is already known from the
analysis performed in Ref. 12 where the classification of
which representations appear in each generation was car-
ried out. One can verify that, in fact, both approaches
give the same answer. However, the formulation
presented in this note gives us more information; one can
also obtain the trace conditions satisfied by the represen-
tations of each generation. These trace conditions ap-
pear in this context as consistency conditions from the
fact that

~
A„(x)& is constrained according to (9). From

(9) and (11) one finds that
~
B„(x)&must also satisfy

yi.Pa'& a(at(,"(
~
Bp)q(x)&=0, (i3)

~here ~q ~
means that the index q must be excluded

from the symmetrization. Similarly one can analyze the
conditions satisfied by the next generations of gauge pa-
rameters. For example, for the third one

S
~
e„(x)&=a,tea„~ r„,(x)&,

at'"apt"'
~
@„p(x)&=0,

(i4)

yl.pa(ma~a ~,a,t~ ~ @p)q, (x)& =0.

So far we have found a classical theory involving bo-
sonic fields transforming according to all the representa-
tions of GL(d) with a series of generations of gauge in-
variance. This theory may or may not have anything to
do with massless particles. Its uniqueness makes it very
appealing to think that it corresponds to the description
of massless particles. However, one needs to prove that
the physical degrees of freedom of the theory do indeed
transform as representations of the little group
SO(d —2). One way to check this is to analyze the field
equation and gauge invariance associated to each of the
local fields. We have verified that the counting of de-
grees of freedom is correct for representations whose YT
have at most three columns. However, for representa-
tions with four or more columns one has too many physi-
cal degrees of freedom. This is not surprising since we
know that certain double-trace conditions must be im-
posed on the local fields for these cases. In this context,
the generalization of that condition that seems to work is

where
~
B„(x)&are a set of vectors which constitutes a L „„~a(x)& =0, (1S)
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where

I ~~.] =~I (17)

This equation shows that the double traces removed from

~
A(x)) when constraint (15) is imposed are e[T'ective]y

decoupled in the wave equation (5). It is worth remark-
ing that the symmetrization in the roman indices in (16)
is essential in order to have a commutator which is pro-
portional to the L „pq operators. Furthermore, explicit
analysis' of the counting in the description of particular
representations shows that such a symmetrization is re-
sponsible for obtaining the right number of physical de-
grees of freedom. It can also be proved that constraint
(15) does not imply additional conditions for the gauge
parameters. I have analyzed many of the representations
and the conjecture that (5), (9), (10), (15), and (16)
constitute the full description seems to be correct (details
will be shown elsewhere' ).

This work opens a variety of investigations. First of
all, one would like to find a Lagrangean formulation and
to solve constraint (15). Certainly, the extension of this
work to include fermions (with and without supersym-
metry) has to be carried out. Gauge-fixing procedures,
the Becchi-Rouet-Stora-Tyutin formulation, and quanti-
zation have also to be analyzed. Finally, one should try
to formulate interacting theories in this context. One
way to proceed in this direction could involve the search
for a non-Abelian form of the gauge transformation (4).

It is a pleasure to thank M. Mueller, Z. Qiu, and

I-mnpq = QaP9ypa [,man ap~q).

As in previous analyses ' ' this constraint is not a
consequence of gauge invariance; it is an additional con-
straint that must be imposed on the vector field

~
A(x))

itself. Constraint (15) is consistent with the vector-field
equation (5) since, after some algebra, one finds
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