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Calculations of the Surface Stress Tensor at Aluminum (111) and (110) Surfaces
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Quantum mechanical calculations of the surface stress tensor at the aluminum (111) and (110) sur-
faces are presented. In each case the stress is tensile, favoring contraction in the plane of the surface.
This tensile stress is caused by smoothing of the electronic wave functions at the crystal surface.

PACS numbers: 68.35.Md, 68.35.Bs

We have performed a first-principles calculation of the
surface stress tensor at the aluminum (111) and (110)
surfaces. Surface stress arises when the surface layer of
a material energetically favors a lattice constant dif-
ferent from the bulk value in directions parallel to the
surface.

The surface layer of a crystal may reduce its energy
by relaxation of the atomic layers in the direction per-
pendicular to the surface or by a surface reconstruction
in which the periodicity of the reconstructed layer is dif-
ferent from that of the bulk. The lowest-energy configu-
ration of the crystal will have the surface layer stressed
in its own plane, while the bulk of the material exerts an
opposing stress such that equilibrium is maintained, i.e.,
the rotal stress due to both surface and bulk material is
zero.! The surface stress may be so large that it is ener-
getically favorable to relieve it partially by surface
reconstruction or the creation of surface defects. For ex-
ample, the 23x+/3 reconstruction of the Au(111) sur-
face? appears to involve the insertion of an extra row of
atoms every 23 rows and may be explained by the relief
of a tensile surface stress.

Clearly it is important to clarify the role of surface
stresses in the determination of surface structure. As a
step in this direction I present the first accurate calcula-
tions of stress at a metal surface.

When a liquid film is stretched atoms or molecules
move out from the bulk to form new surface which is
structurally identical to the existing surface. Thus the
processes of the creation and deformation of a liquid sur-
face are identical and described in y, the energy required
to create unit area of surface. However, when a crystal
is stretched the distance between the atoms increases and
the nature of the surface itself changes. This process is
quite different from the creation of new surface by the
cutting of bonds. The energy to create unit area of sur-
face of some crystallographic orientation is again denot-
ed by y, but deformation of the crystalline surface is de-
scribed by the surface-stress tensor gaﬁ.3 The surface-
stress tensor is the strain derivative per unit area of the
energy to create the surface '

gaB__‘A _la(}’A )/agaﬂ =76aﬂ+ay/asaﬂs (1)

where A is the surface area per atom, g,5 denotes the

strain tensor, and &,p is the Kronecker delta function.
The indices a and B label directions in the plane of the
surface. In a discussion involving stress it is important to
make clear the sign convention that is being used.
Throughout this paper I employ the convention con-
sistent with the standard form of Eq. (1) given above.
For example, in the convention used here, the kinetic en-
ergy of an electron gas which always pushes outwards
gives rise to a negative diagonal stress.

For a liquid 8y/8¢4p is zero and hence the diagonal
components of g,s are numerically equal to y. However,
for a crystal 8y/8¢,p is of the same order as y and the re-
sulting surface stress may be positive (tensile) or nega-
tive (compressive). Crudely speaking a tensile surface
stress is associated with a surface which energetically
favors contraction in the plane of the surface while a
compressive surface stress favors expansion. This situa-
tion is pictured in Fig. 1.

[ have performed self-consistent local-density-func-
tional calculations using norm-conserving pseudopoten-
tials on the Al (111) and (110) surfaces. For the
Al(111) calculations I used a supercell containing a
nine-layer-thick slab of aluminum with six layers of vac-
uum.® The forces acting on each atomic layer perpen-
dicular to the surface were calculated and the structure
relaxed until these forces were less than 5x10~* Ry
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FIG. 1. A surface with a tensile stress (g >0) favors a
smaller lattice constant than the bulk value ao in directions
parallel to the surface, while a surface with a compressive sur-
face stress (g <0) favors a larger one.
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A ~!. The only significant relaxation was of the first lay-
er which moved outwards by 1.0%, in good agreement
with the LEED data of Nielsen and Adams® who found
Ad 3" =0.9%. For the (110) surface [ used a supercell
with a nine-layer slab of aluminum and seven layers of
vacuum. I did not perform a relaxation of the surface
layers but instead used the coordinates of Ho and Boh-
nen.” They performed highly accurate self-consistent
pseudopotential calculations on the A1(110) surface and
obtained Ad{}'O =—6.8%, Ad$'Y =+3.5%, Ad}®
= —2.4%, and Ad‘%m) =+1.6%. My calculations with
these relaxed atomic positions gave forces on the atoms
of less than 2x 10 ~3 Ry A ™!, confirming that this struc-
ture is indeed close to an energy minimum.

The volume-averaged stress tensor and total energy
were evaluated for each of the two crystallographic
orientations. The calculation of the stress tensor was
performed by use of the stress theorem of Nielson and
Martin.® The following three types of structure were in-
vestigated: (1) A supercell full of bulk aluminum (.e.,
with no surfaces). The number of atoms in the supercell,
Ny, is thus fifteen for the (111) surface and sixteen for
the (110) surface. The energy per supercell is denoted
by E, and the volume-averaged stress is 0,’,’5. (2) The
same supercell as above but containing a slab of
Ns; (=9) layers of atoms and N, — N, layers of vacuum
with unrelaxed atomic positions. The energy per super-
cell and volume-averaged stress are E;, and o4, respec-
tively. (3) Again the same supercell with N, (=9)
atoms and N, — N, layers of vacuum but with relaxed
atomic positions. Only relaxations in the direction per-
pendicular to the surface were allowed. The energy per
supercell and volume-averaged stress are E, and ogp, re-
spectively.

From these calculations [ obtained the surface energy
per unit area, y, since this may be written as

y=1/A)E; — (N;/Np)Ep], )

where A is the surface area per atom and E; refers to the
energy per supercell with relaxed or unrelaxed atomic
positions as appropriate. The surface stress tensor gep
was also obtained as it follows directly from Egs. (1) and

(2):
s =L (/)63 — (No/Ny by, <)

where V is the volume of the supercell and ogg refers to
the stress with relaxed or unrelaxed atomic positions.

I used a lattice constant of ap=4.02 A obtained from
an extrapolation to zero temperature of the value of
ao=4.05A at 298 K given by Wyckoff.® However, this
choice does not give zero bulk stress (crgﬂ;éO) because of
the various approxiations involved in the calculations.
The most important of these are the use of the local-
density approximation (LDA), the neglect of zero-point
motion, and the use of an incomplete basis set. The re-
sults presented in this paper were obtained with the
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Wigner form!® of the LDA. Repeating the calculations
for the (111) surface by use of the Ceperley-Alder!'
form increased c{,’,, by 29 kbar, favoring a smaller lattice
constant than the Wigner formula. This fortuitously
gives a value of 0,1,’5 close to zero, but the values of y and
gap Obtained from Eqgs. (2) and (3) are not significantly
altered.

It is clear from the definition of surface stress in Eq.
(1) that to calculate gqs accurately we must use a slab
thick enough to give good values of the surface energy y
at the particular bulk lattice constant chosen and at
values close to it. My value of y for the (110) surface of
0.65 eV per surface atom is reasonably close to the 0.77
eV per surface atom obtained by Ho and Bohnen.’
Furthermore, Ho and Bohnen’ performed calculations
on slabs of between nine and fifteen layers showing that
the surface energy had already well converged for a
nine-layer slab.

The values of y and the nonzero components of g,z for
the relaxed surfaces calculated from Eqgs. (2) and (3) for
the (111) and (110) surfaces are shown in Table I. The
values of 8y/9¢45 as deduced from Eq. (1) are also given.
In order to clarify the mechanisms leading to surface
stress the various quantities are broken down into kinet-
ic, exchange-correlation, and electrostatic contributions.
Although these are pseudopotential calculations where
smooth pseudo wave functions replace the real wave
functions in a process which can be thought of as swap-
ping kinetic for potential energy, this decomposition is
meaningful because the quantities y and gqp are defined
in terms of differences in energies and stresses between
two structures.

As is clear from Table [, dy/9¢ is of the same order as
y itself. The surface stresses on the (111) and (110) sur-
faces are of approximately the same magnitude and are
tensile, corresponding to a preference for a contracted
surface layer. The (110) surface contains inequivalent
perpendicular directions which can be taken to be along
[001] and [T10] vectors of the cubic cell. The calculated
surface stresses in these two directions are 0.115 and

0.124 eV/A?2, respectively, while on the isotropic (111)
surface the surface stress is 0.145 eV/A2 It is well
known that the relaxation energy of the atomic planes
perpendicular to the surface from the bulk separation to
the minimum-energy positions is at most a few percent
of the surface energy.” Indeed, I found relaxation ener-

gies of 1073 eV/A? on the (110) surface and 10 ™%
eV/A? on the (111) surface which are respectively 1.7%
and 0.2% of the surface energy. Similarly the surface
stress is insensitive to these relaxations which give rise to
increases of only 8.1% and 1.4% in the surface stress
along the [001] and [110] directions in the (110) surface
and 2.6% on the (111) surface.

Because the surface stress appears to be insensitive to
the precise atomic positions at the surface, it seems clear
that it originates from quite general features of the sur-
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TABLE 1. Energetics of the Al (111) and (110) surfaces and of a jellium surface with the
same average electron density in the bulk of », =2.06. The jellium results were deduced from
the data of Lang and Kohn (Ref. 12). The surface energy 7, strain derivative dy/d¢, and sur-
face stress g are given, broken down into kinetic, exchange-correlation, and electrostatic parts.
All entries are in units of electronvolts per square angstrom.

Exchange
Kinetic correlation Electrostatic Total
Al(111)
y —0.346 +0.173 +0.217 +0.044
dy/d¢ +0.635 —0.226 —0.308 +0.101
g +0.289 —0.053 —0.091 +0.145
Al(110)
y —0.330 +0.184 +0.202 +0.057
dy/9€c01) +0.558 —0.240 —0.261 +0.058
dy/9¢ec10) +0.615 —0.240 —0.308 +0.067
£(001) +0.228 —0.055 —0.058 +0.115
£d10) +0.285 —0.055 —0.106 +0.124
Jellium r; =2.06
y —0.303 +0.183 +0.072 —0.048
dy/d¢e +0.489 —0.215 —0.118 +0.156
g +0.186 —0.032 —0.046 +0.108

faces. It is informative to compare the calculated sur-
face stresses and energies for aluminum with those of jel-
lium. To determine these quantities for jellium it is
necessary to define the energy required to cut and de-
form the positive background charge. Here I make the
choice that the positive background has rigidity but no
mechanical strength so that the required energies are
purely electrostatic. This leads to the normal definition
of the surface energy as used, for instance, in Ref. 12.
The surface stress is then

g=7+§'r537/3rs, 4)

where r; is the radius of the sphere occupied by one elec-
tron. Lang and Kohn'? have calculated the surface ener-
gy of jellium at a number of values of r;. By fitting their
results to a Chebyshev polynomial and differentiating
the resulting series'® I have calculated g from Eq. (4).
The values of g, y, and 9y/d¢ broken down into their
component parts are given in Table I. With reference to
Table I it is clear that the kinetic and exchange-cor-
relation contributions to the surface energy and stress
are reasonably described by those of jellium. The most
significant differences between the results for the alumi-
num surfaces and those for jellium are between the elec-
trostatic terms. In particular, the positive electrostatic
contribution to the surface energy of jellium is very small
and as a result the surface energy at this density is nega-
tive. The electrostatic contribution to the surface stress
is also much smaller than in the calculations for alumi-
num itself.

Because of the qualitative agreement between the re-
sults for aluminum and jellium it seems likely that the

surface energetics of aluminum can be reasonably well
described in terms of a simple model of the charge densi-
ty at the surface. In the following section I give argu-
ments which lead to a tensile surface stress. These de-
pend only on the electronic wave functions being
smoothed at the surface.

The kinetic contribution to the surface energy is nega-
tive because the electrons spill out in the direction per-
pendicular to the surface and smooth off their wave
functions parallel to the surface. The resulting lower
electron density at the surface reduces the magnitude of
the exchange-correlation term and hence gives a positive
contribution to the surface energy. The separation of
positive and negative charge caused by the spillout leads
to a positive electrostatic term in y. The exchange-
correlation and electrostatic terms dominate to give a
positive surface energy.

The balance of terms comprising the surface stress is
quite different. In the bulk the kinetic energy of the
electrons contributes a negative diagonal stress favoring
expansion. The reduced kinetic energy at the surface
leads to a reduction in the magnitude of this kinetic term
and hence a positive or tensile contribution to the surface
stress which favors contraction in the plane of the sur-
face. The electrostatic and exchange-correlation terms
oppose the kinetic term and give negative contributions
to the surface stress. In the bulk the exchange-cor-
relation term gives a positive diagonal stress favoring
smaller volumes. Because of the lower charge density at
the surface the magnitude of this term is reduced and a
negative or compressive surface stress results. A nega-
tive electrostatic contribution to the surface stress is ob-
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tained if the charge separation resulting from the elec-
tronic spillout is modeled by a charged parallel-plate
capacitor giving an electric field between the plates in
the direction perpendicular to the surface. The electric
field E(r) produces a Maxwell stress'* o,5 given by

ouV == JIE@E (D)= FE®W5,ld . (5)

which is negative in the plane of the capacitor plates. In
jellium the components of E in the plane of the surface
are strictly zero and hence the electrostatic surface stress
is always negative. At a real solid surface the situation
is qualitatively different; the components of E in the
plane of the surface are nonzero and contribute to the
Maxwell stress.

In conclusion, I note that while the exchange-cor-
relation and electrostatic energies determine the positive
sign of the surface energy, it is the kinetic term that
dominates g,p to give a positive surface stress. The gross
features of the surface energy and stress are similar to
those of a jellium surface but a more detailed compar-
ison reveals significant differences. If the surface stress
arises principally from the charge spillout at the surface
then it will be largely confined to the outermost layer of
atoms. If this is the case then the stress averaged over
the thickness of the top layer of an aluminum surface
will be of the order of 90 kbar. To estimate the reduc-
tion in lattice constant in the outermost atomic layer
necessary were this surface stress to be relieved we might
treat the surface layer as a sheet, of modulus equal to the
bulk modulus of aluminum. This would give a reduction
in lattice constant of roughly 4%. But as the Al (110)
and (111) surfaces are not generally thought to recon-
struct they must be stable with this magnitude of surface
stress present. Larger surface stresses on the surfaces of
materials other than nearly-free-electron-like metals
may cause reconstructions or defect formation. It would
be of great interest to calculate the surface stress tensor
on surfaces such as those of gold to test this conjecture.
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