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Strong-Magnetic-Field States of the Pure Electron Plasma

A. H. MacDonald
National Research Council, Otta~a, Ontario, Canada El A OR6

and

Garnett W. Bryant
McDonnell Douglas Research Laboratories, St. Louis, Missouri 631'66

(Received 13 November 1986)

We study the zero-temperature electron plasma in a strong magnetic field in the Hartree-Fock ap-
proximation. The calculations are based on an expression for the density matrix which allows all
Coulomb integrals to be performed explicitly and allows exchange to be treated exactly. We find that
the ground state changes from a charge-density-wave state with Q parallel to the field, to a uniform-
density state, then to a crystal state in the holes of the lowest Landau level, and finally to an electron-
crystal state as the magnetic field is increased.

PACS numbers: 71.45.—d, 71.30.+h, 72.20.My

At su5ciently low electron densities the zero-temper-
ature electron plasma (ZTEP) should undergo a transi-
tion to a Wigner-lattice state. ' Following suggestions
that a strong magnetic field would increase the density at
which crystallization occurs, Kaplan and Glasser pro-
posed an ordered state for the ZTEP in a strong field
consisting of a two-dimensional hexagonal lattice of
charged rods oriented parallel to the field and demon-
strated that this state has lower energy then the
uniform-density state formed by noninteracting elec-
trons. In the Kaplan-Glasser (KG) state each of the
charged rods behaves as a one-dimensional electron gas
(1DEG) and Kleppman and Elliott demonstrated that
at very strong fields a further reduction of energy could
be obtained by allowing the charge density to vary along
the rods as well. As emphasized by later workers, the
state with a charge-density wave on the 1D rods evolves
continuously into a Wigner crystal as the field is in-
creased. In previous work the exchange between dif-
ferent charged rods has either been neglected or treated
approximately, causing the reliability to become ques-
tionable in the region of field where the crystallization
transition actually occurs. In this Letter we report the
results of a calculation which treats exchange exactly.
We find that the transition from uniform-density state to
Wigner crystal state occurs in several steps and that the

ZTEP has a richer phase diagram in the transition re-
gion than had been previously anticipated.

There have been many experimental attempts to ob-
serve magnetic-field-induced crystallization (MFIC) by
studying magnetotransport properties in narrow-gap
semiconductors, and graphite. ' Typical carrier densi-
ties in these materials correspond to values of the density
parameter, r,*, which are —l. [r,* =m *(3/4rrna) )/s
where m', n, and e are the semiconductor's effective
mass, carrier density, and dielectric constant. ] At these
densities kinetic-energy costs prevent crystallization at
zero field and anomalies in magnetotransport properties
have frequently been taken as evidence for MFIC. The
situation is complicated by the possible importance of
the inevitable ionized donors and controversy has arisen
because of the qualitatively similar effect of magnetic
freeze-out and MFIC on transport properties. " It is our
hope that improved understanding of the expected prop-
erties of the pure electron plasma can contribute to the
resolution of these controversies. It is worth remarking
that a true pure electron plasma can be obtained through
use of magnetic confinement. ' However, at least at the
densities achievable with current magnet technology
(r,' ~500) Wigner crystallization occurs even at zero-
field strength' and MFIC cannot be studied.

Our calculation is based on the observation that the
one-particle density matrix

p(k,', k, :A",4 ) =g n, (k,'W'
~
a)(a

~ k,X)

can be expressed without loss of generality in the form

p(k,', k, :X',2') =+A(k, :p)exp[ —,
' ip„(%+X')]6+ ~+&2 Bk k +

P

(2)

where we use the usual basis of Landau-gauge kinetic-energy eigenstates' and we consider the strong-field limit so that
all electrons are in the lowest Landau level. In Eq. (2) k, is the wave vector for motion along the field, 4' labels the
states in the lowest Landau level for each value of k„and l—:(hc/eB) '~ . By use of Eq. (2), the matrix elements of the
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eflective single-particle Hamiltonian may be expressed in the form

~(q. I, (k, p,—)I),

Ak e ~dp iq~
(k,'+'~ HHp~ k,+) =&k k &~ ~ „+ „'g~(pz. q)~~', ~+t &, ~k,', k, +&, exp

2
(&+& )

—
q ~~12i2

x (1 —g„) ' 2(2
(3)

where

X(u, L) = " dte ' '[Jo(ut)/(t +v')].Jp
Similarly for the Fourier components of the charge density

(4)

p(q)=g(a ~e '~'~ a)n, = exp( —
4 q~l ) 'h(k, :q),

(2~&')
(s)

A(k, :q) gives the contributions to p(q), the Fourier
transform of the charge density, from diAerent k, 's. The
first of the two terms inside the large parentheses in Eq.
(3) gives the Hartree contribution from h(p, :q) to the
eA'ective potential and the second is the exchange contri-
bution whose nonlocality is reflected by its dependence
on k, and p, .

For the Wigner-lattice state we seek solutions to the
Hartree-Fock equations for which A(k, ;q) is nonzero
only for q equal to a reciprocal-lattice vector. In that
case the Hartree-Fock matrix elements for a given

A(p, :q) are of the same form as those coming from an
external periodic potential of the same periodicity. Self-
consistent solutions can be sought by starting with a po-
tential which attracts the electrons to the lattice sites,
evaluating d, (p, :q) from Eq. (2), diagonalizing the
Hartree-Fock matrix, reevaluating A(p, :q), and iterat-
ing. It is useful, however, to start with the consideration
of solutions for which A(p, :q) is nonzero only for
q&=(q„q~) equal to a 2D reciprocal lattice vector and

n =p(q =0)/n =kg. v/2tr l, (6)

where v =h(k, :q =0) (
~
k,

~

& k~) is the fractional
filling of each Landau level and equals the ratio of 2~l
to the 2D unit-cell area.

We have found self-consistent solutions to the
Hartree-Fock equations corresponding to KG states for a
range of values of v, n, and magnetic field. ' The results
for the energy per electron can be extremely accurately
fitted to an expression motivated by considering the case
of well-separated rods (v«1):

q, =0. These solutions correspond to the 2D lattices of
charged rods of Kaplan and Glasser (KG) except that
exchange between diAerent rods is included exactly even
when many rods overlap. For the KG states we see from
Eq. (2) that k, remains a good quantum number and we
find self-consistent solutions for which only states with

~
k,

~
& kp are occupied. The lowest-energy states have

one electron for each occupied k, at each 2D lattice site
so that

=2@[6 /6+ (I/y' ) [c,(6J2)/42+Bc(v, 6)l[, (7a)

where

c(v, g) =(2tr) '[ —lnv —1.6134+Av+B(6)e ' ') for v( 2 . (7b)

In Eq. (7b), the fitting parameters A =2 and B = —3.2
+0.046, 6 =kpl, energies are in units of the eAective
Rydberg (R ' ), and y = h co,/2R* =4.3 && 10 6(cm/
m*) xH(tesla) is a dimensionless measure of the field

strength. The first term inside the curly brackets in Eq.
(7a) is the kinetic energy. The first term inside the
square brackets in Eq. (7a) is the exchange energy for
the 1DEG of a given charged rod and is closely related
to the exchange energy of the uniform gas (v= 1 ) state,
c&(6). [c&(6) has been reduced to a single quadrature by
Danz and Glasser. '

1 The first two terms in Eq. (7b)
represent the Coulomb energy of the Kaplan-Glasser
state for well-separated rods (v«1) which can be relat-
ed' to the Madelung energy of a 2D one-component

plasma on a triangular lattice. ' The third and fourth
terms in Eq. (7b) represent corrections to the Coulomb
energy due to the finite diameter of the rods ( —I) and
exchange between separated rods. Finally, we can use
particle-hole symmetry within each Landau level in the
KG state to show that '

c(v, 6) = (2 —v ') c|(6)+(v ' —1)c(1 —v, 6), (8)

where the ground state for v~ —,
' is a KG state in the

holes of the uniform-density state.
For a given density and field the energy must be mini-

mized with respect to v to find the lowest-energy KG
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state. To avoid the necessity of finding self-consistent
solutions to the Hartree-Fock equations at each possible
value of v we have used Eqs. (7) and (g) to minimize the
energy. For v& —,

' decreasing v separates the rods of
electrons while for v& —, increasing v increases the sep-
aration between the rods of holes in the otherwise
uniform-density system. For v & 2 decreasing v in-

creases the electron density in each charged rod which
increases the magnitude of the 1DEG exchange energy
of each rod and lowers the interaction energy of the sys-
tem. For v& —,

' decreasing v also tends to lower the in-

teraction energy of the system except very near to v =1
where the Madelung energy of well-separated hole rods
dominates (see below). However, decreasing v increases
the kinetic energy (yB /3) since states with higher values
of k, must be occupied when the Landau-level filling de-
creases [8=3+/(2r,* y

~ v)]. As y increases each Lan-
dau level holds more electrons, the kinetic energy cost of
separating rods decreases, and the lowest-energy KG
state occurs at smaller values of v.

In Fig. I we show the energy and Landau-level filling
factor, v, for the optimal KG state for r,* =2 and a range
of fields appropriate to narrow-gap semiconductors. The
discontinuity in the optimal filling factor at v=1 is due
to the positive Madelung energy from widely separated
hole rods for v slightly below 1. The discontinuity near
v= —,

' reflects a first-order phase transition between hole
KG states and electron KG states as y increases. For v

just below 1 the hole KG states are unstable with respect
to a charge variation with wave vector 2kF along each
rod, and the ground state is a hole Wigner crystal [a
3 —Q charge-density-wave (CDW) state with one elec-
tron per unit cell]. An approximate stability require-

ment can be derived from the Hartree-Fock equations by
averaging the exchange potential over k, values to elim-
inate its nonlocality' and is used in Fig. 2 to produce a
phase diagram of strong-field states of the ZTEP. For
r,* y ~ 2.231 more than than one Landau level is occu-
pied, even for a noninteracting system. This is the
weak-field regime to which our calculations do not apply.
In the strong-field regime kinetic energy is dominant at
first, there is no charge variation perpendicular to the
field (v= I), and the system forms a CDW state with Q
parallel to the field. As y increases, kF decreases, the
wavelength of the CDW becomes longer, and the electro-
static energy cost of the CDW becomes too large so that
the ground state has uniform density. Next, the Landau-
level degeneracy increases sufficiently to allow a KG lat-
tice of rods to be formed in the plane perpendicular to
the field. For v& —,

' the lowest-energy KG states are
rods of holes in the uniform state. Where these rods are
unstable the ground state is a 3D Wigner lattice of holes.
As y increases further v decreases below —,

' and electron
KG states form. Finally, for sufficiently strong fields or
sufficiently low densities the electron KG states become
unstable and we obtain the expected electron Wigner
crystal.

The accuracy of this phase diagram has been checked
by finding numerically exact solutions to the full Har-
tree-Fock equations as a function of v for selected values
of r, and y. (Detailed results will be presented else-
where. ' ) We can conclude from this work that MFIC
in a pure electron plasma shows a richness of detail
which has not been previously anticipated. The possibili-
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FIG. 1. KG state energies vs y at r,* =2. The crosses show
the filling factor v (scale on right), at which the KG state ener-

gy is minimized for each value of y. The solid line is for the
minimum-energy KG state while the dashed lines are for the
v=1, v= —,', and v= —,

' states. Note that the v= —,
' state is not

the minimum-energy state for any value of y.

FIG. 2. Phase diagram for strong-field states of the ZTEP
in a range of field and density appropriate to narrow-gap semi-
conductors. (WF, weak-field regime; CDW, charge-density
wave with QIIH; U, uniform-density state; HKG, hole Kaplan-
Glasser state; H WC, hole Wigner crystal; EKG, electron
Kaplan-Glasser state; EWC, electron Wigner crystal. )
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ty that states in some regions of the phase diagram may
be preempted by highly correlated uniform-density states
related to those responsible for the fractional quantum
Hall eAect in 2D ' ' only adds to the motivation for fur-
ther studies of the strong-field ZTEP.
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