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Anomalous Transport and the Coupling of Plasma Diffusion and Heat Flow
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Anomalous transport has been observed in heat-pulse tokamak experiments in the form of faster
thermal diA'usion than expected from thermal conductivity alone. The anomaly is resolved by correct
treatment of time-dependent transport, coupling heat flow and plasma dift'usion. The diffusion rates are
exhibited as invariant eigenvalues appearing in the transport model. We show how these eigenvalues
couple the basic transport processes. The thermal diAusion rate is not determined by thermal conduc-
tivity, since it is not an eigenvalue with temperature as eigenmode.

PACS numbers: 52.25.Fi, 52.65.+z

Temperature perturbation experiments in tokamak
plasmas exhibit anomalous heat transport in the form of
faster thermal

diffusion

than predicted by electron
thermal conductivity. Fredrickson et al. ' have estimated
the "efI'ective" thermal conductivity by analyzing experi-
mental and numerical data. Their analysis finds effective
conductivity for a heat pulse to be about 1.5 times larger
than the heat conductivity put into numerical codes.
Goedheer tried to resolve this anomaly by choosing
diff'erent ways of estimating eA'ective thermal conductivi-
ty.

Grad has attributed the apparent anomaly to an in-
complete understanding of the coupling of plasma
diA'usion and heat Aow. Grad extracted eigenvalues
from the transport equations and found that the trans-
port is governed by eigenvalues which are functions of
both the resistivity g, and the thermal conductivity E.
Since thermal conductivity is not an eigenvalue there is
automatic coupling of temperature to mass diA'usion.

Here, we find a new set of variables, viz. , approximate
eigenmodes, which have those eigenvalues as their natur-
al time constants. We can numerically excite each
eigenmode separately and verify that all relevant profiles
follow the decay rate predicted by the eigenvalues; these
rates can diff'er substantially from those predicted by

simple conductivity or resistivity considerations.
We consider the Grad-Hogan model of slow evolution

obtained from the dissipative magnetohydrodynamic
(MHD) equations by dropping of the inertia term. In
this scaling of the MHD equations, the transport evolves
through successive equilibria established by the pressure
balance Vp =Jx B.

The transport problem has been cast into an invariant
(also known as alternating dimension) formulation by
Grad. The key step is to eliminate the velocity by tak-
ing microcanonical volume averages on each Aux surface
and introducing suitable adiabatic dependent and in-

dependent variables. The prototype system takes the fol-
lowing form:

But

Bt
Buj

Atj +Rt

Here we choose ul =v, u2=(, u3=tT, and x=2. Thus
we obtain a set of one-dimensional evolution equations
for rotation number v and mass density g with respect to
toroidal Aux X (also denoted by tttt) and entropy density
o., where for pressure p, mass density p, and ratio of
specific heats y, p =exp(a)p". The evolution equations
are
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supplemented by the ordinary diA'erential equation for average pressure balance

[(yp+8 )/a]Ba/BX+atlt28v/BZ+ (yp/&)t)(/BZ+p Ba/BE+a C =0,

with magnetic field 8, current density J, and temperature T, where Du;/Dt =Su;(Z, t)/Bt Resistivity parallel t.o 8 is rill,

a =dX/dV, V is volume inside a Aux surface, A;t is the element of the inductance matrix relating the toroidal and po-
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loidal magnetomotive forces pj (j=1,2) to the difl'erential fluxes y (prime denotes difl'erentiation with respect to V),
ko=rl~~a det(A), A =a (I~~+ v!~2+ v l22) with

~» =~„e~,ger —~„eA»/ex, /„=/ „e/,yes /»—e/ „/ez, /„=/ „a/,gaz / „—a/, gag,

C= t)Aii/t)X+2vt)Ai2/BZ+ v'6&2z/t)X, Ri =(yP/p')((I'& —&J B&'/(B'&), S& =(lVZi '/B'&.

The angular bracket denotes flux averages. Anisotropic
Braginskii transport yields the resistivity and thermal
conductivity corrections

~„=1+[(g~ —
qadi)/qadi]Si/R,

~„=0.2+ (0.8/s, ) (R, —y,'/(B'&);

q~~ =ri~/T, q~ =2@~~., q~ is a numerical factor.
The above system is truly diA'usive: It gives the time

derivatives of the dependent variables in terms of
second-order spatial derivatives, and thus represents ac-
tual transport phenomena. The original system has con-
vective terms besides diA'usive terms; consequently,
transport phenomena can be obscured by convective
eAects.

We solve the transport problem by the standard
alternating-dimension method. The 3D solution provides
the geometric quantities required for the 1D system to
progress. We have used several 3D equilibrium codes, in
this case the code of Bauer, Betancourt, and Garabedi-
an. 6

To investigate diA'usion we examine the matrix 2;~ of
coefficients of the second derivatives in the 1D evolution
equations. The three eigenvalues of 8;~ are the transport
coefficients for the plasma. The eigenvalues are invari-
ant, independent of the choice of dependent or in-
dependent variables. Thus the eigenvalues represent true
transport coe%cients of diffusion of one adiabatic vari-
able with respect to another. In this linearization, the
largest eigenvalue A.o, representing the skin eflect, is
decoupled from the heat flow and appears explicitly in
the v evolution equation. The other eigenvalues k+
represent the coupled eAects of plasma diftusion and
heat flow. From Grad, we have

&o = gaia'det(A),

= -,
' (~, +&.,) ~ —,

' (~2+ &.,' —2~~,~, ) '",
where

~= [p+(2y ' —l)(a'&]/(p+(B'&).

The constants X~ and X2 separate the explicit contribu-
tions from g and K, the resistivity and thermal conduc-
tivity (there is also lower-order nonlinear coupling of
everything in the full numerical solution):

But X2 has taken an important role in this Letter because
it is the coefficient of the second derivative of T in the
1D T-evolution equation. It compares with 1, for the
cylindrical coordinates of Refs. 1 and 2, where heat
transport is called anomalous because X, is expected to
determine the thermal diffusion rate, although we now
know that it cannot, because is it neither an eigenvalue
nor is temperature an eigenmode. The form of k+
shows that the heat flow and the resistivity are intrinsi-
cally coupled. To establish the role of these eigenvalues
in transport, we introduce approximate eigenmodes
(v, v+, v —) transformed from (v, g, cr). We introduce a
delta-function source (in time and toroidal flux) such
that only one of the three pure modes is excited. 'A'e

solve the 3D transport problem, starting from the back-
ground initial state v= 1 —0.5y, g =1 —y, and T =1
—0.5y, where y =X/X„ the toroidal flux normalized by
its value at the plasma edge. We run until the profiles
are approximately equilibrated (t=0. l in skin time).
Then we excite a particular mode and observe the decay
for time scales ranging from t =0.0001 to 0.01 in various
runs. The duration of the excitation is typically, '& of
the total time of observation; the width is 0.02k, . For
each profile we then fit a Gaussian function to the evolv-
ing perturbation in order to estimate an approximate
diAusion rate X„numerically:

a„ (y —yn) '
[4lr& „(r—to)] ' ' 4~.« —ro)

exp
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where rci is another numerical factor. Only the eigenval-
ues X~ are diflusion rates; ki and k2 are parameters.

FIG. 1. Comparison of X,T with the excited pure eigenmode
for A. ~ and with k2.
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FIG. 2. Comparison of A, T with the excited pure eigenmode
for k —and with k2.

FIG. 3. Comparison of XT with A, 2, varying g when only tem-
perature is perturbed.

For each profile, we thus describe the perturbation ap-
proximately as the solution of a diflusion equation of the
form Bu/Br =X„B'u/By '.

The appropriate sources in the various evolution equa-
tions are chosen to make the Gaussian fit valid: The
pulse must be local and, for a given width, the amplitude
must be moderately large to make the second derivatives
large. Too large a pulse makes the numerics less accu-
rate and the eigenvalues themselves change by large
amounts so that comparison becomes difficult.

We found that the temperature, pressure, and density
have almost the same decay rate as k+ or k — corre-
sponding to the mode excited. In this Letter we concen-
trate on temperature only. When ko is excited, the v

profile decays with time constant ko. In that case the
other profiles do not have any Gaussian-type perturba-
tion s.

Our conclusions are summarized in Figs. 1-3. Figure
1 reports the results of nine runs when the X+ mode is
excited. The temperature decay rate is near the time
scale predicted by the eigenvalue k+, which is substan-
tially higher than the value X2 predicted by thermal con-
ductivity alone.

Figure 2 reports the results of runs when X is excited.
Here we see that the temperature diff'usion rate is near

, the eigenvalue of the mode excited, and much lower
than 2.

The calculated k's in Figs. 1 and 2 are time inde-
pendent and unaflected by the geometry.

The most significant result is that the temperature
diffusion rate follows X+ or X depending upon the mode
excited; it does not follow the intuitive rate X2. However,
if a perturbation in temperature alone is introduced, both
eigenmodes are excited. The temperature decay rate
cannot be followed by fitting a Gaussian parametrized by
a time-independent X. This is because formally no heat

equation can be written for T without ignoring the cou-
pling of the plasma diflusion and heat flow. But numeri-
cally one can make such a fit at each instant and esti-
mate an approximate rate kT which will now depend on
time. In order to make quantitative comparisons with
experiments, we require time-dependent data, not avail-
able to us as yet.

For runs having temperature perturbations only, the
numerically fitted A. T decreases in time. In Fig. 3 we
look at XT's from runs at comparable (resistive) times at
a fixed location with perturbations that have not yet
spread too much and before nonlocal eAects become im-
portant. The plot shows kT for runs with constant K~ but
varying g&. The plot also shows the corresponding values
of A. 2. For each run, the pulse is centered at y =0.25. As
known from its algebraic expression, X2 is almost in-
dependent of g. The deviation of XT from X2 due to the
coupling of K with g is in the direction reported in Refs.
1 and 2 but, as we have already remarked, this is not an
anomaly since X2 is not an eigenvalue and temperature is
not an eigenmode. Large gi for constant x& is equivalent
to x 0 keeping g i constant. Therefore the plot clearly
shows that when x approaches zero we still have thermal
diAusion, a result not found in other models.

Note that for high-P plasmas the apparent anomaly
will be slight; the size of the apparent anomaly is highest
for low-P plasmas.

Enhanced transport due to magnetic and electrostatic
fluctuations is also proposed as a possible explanation for
the heat-pulse propagation anomaly. ' Our findings do
not eliminate this possibility. We do find that coupling is
inherent in transport, an ever present source of apparent
anomaly, whatever the other factors that may be at
work.
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