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Chemical dissolution of a two-dimensional porous medium by a reactive fluid which produces fractal
patterns is studied. A new model is proposed that introduces a cumulative erosion process which
broadens the branches of the cluster and gives structures very similar to the experimental ones.
Diffusion-limited aggregation is a limiting case of this model. An interpretation of the evolution of the
injection pressure with time which yields the fractal dimension is also presented, and agrees with the ex-

perimental results.

PACS numbers: 47.70.Fw, 47.20.Hw

It has been known for a long time that injection of a
reactive fluid into a soluble porous medium yields very
ramified dissolution patterns. In nature, the networks of
caves in calcareous regions are macroscopic results of
such processes. Acids are routinely injected into oil-
bearing rocks and similar patterns are thought to occur.
At present, there is no clear understanding of the physi-
cal basis of the patterns formed by chemical dissolution
processes.

The physical phenomenon of the formation of dissolu-
tion patterns (DP) involves the flow of a liquid in a
porous medium coupled with a chemical reaction.!? Al-
though qualitative 1D models3 have been proposed, there
are no quantitative models for the actual DP observed.
In this Letter, I present experimental results on a simple
2D system and develop a new model that provides a
quantitative description of the DP.

The essential idea of my experiments is to take advan-
tage of the property of plaster of being slightly soluble in
pure water. Thus I pumped water into the center of the
model and observed a ‘““breakdown’ of the porous plaster
medium (Fig. 1). I used 2D radial geometries,* the sam-
ple consisting of a thin disk (thickness #=1 mm and ra-
dius Rex =125 mm) of pure plaster held between two
transparent plates. Plaster was made by mixing 10 parts
of water with 11 parts of CaSQO4-0.5H,0. After setting,
the medium was very homogeneous® and had a porosity
of 60% porous and a permeability of 60 um?2.

Initially, the plaster was fully saturated (in chemical
equilibrium) with water with a concentration in calcium
sulphate co=13 mm. At time =0, pure water (viscosi-
ty u and concentration in calcium sulphate ¢ =0) was in-
jected at constant flow rate Q at the center of the disk,
displacing the saturated water and subsequently dissolv-
ing some of the plaster. Good images of the final DP
were obtained by injection of a low-melting-point alloy
(Wood’s metal) into the dried plaster sample. After
cooling, the plaster was dissolved. Figure 1 shows three
patterns obtained for different flow rates but same time.
At low flow rate, the branches are broader and the num-
ber of ramifications decreases.

At first glance, the 2D radial structures obtained are
very similar to other experimental growth patterns asso-

ciated with the model of diffusion-limited aggregation®
(DLA): dielectric breakdown,’ electrodeposited metal
leaves,® viscous fingering,® or diffusion-limited polymeri-
zation.'® This analogy can be understood by comparison
with viscous fingering in a porous medium. The velocity

(a)

(b)
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FIG. 1. Photographs of 2D radial experiments stopped after
4 h and performed at different injection rates. (a) 48 cm3/h.
(b) 4 cm3/h. (c) 2 cm?/h.
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u of a fluid of viscosity g in a porous medium of permea-
bility k& 1is proportional to the pressure gradient:
u=—M gradP. Here M =k/u is the mobility and P the
pressure field. During the displacement of a viscous fluid
by a nonviscous one, viscous fingering occurs as a result
of the very sharp increase of mobility when a small per-
turbation appears at the interface between the fluids. In
the present case, the injected reactive fluid and the sa-
turating nonreactive fluid have the same viscosity but, at
the interface (the reactive front), the permeability jumps
from a low value in the porous medium to a quasi-
infinite value in the etched channels. Furthermore, the
incompressibility of the injected water which leads to a
Laplace equation and the boundary conditions (constant
pressure in the dissolved channels and at the boundary of
the model) are similar to the case of viscous fingering
which has been shown to be described by DLA.%!
Thus, we might expect DLA to model these unstable dis-
solution patterns.

A unique feature of my model is that it accounts for
the chemical etching by including a cumulative effect
based upon the real mechanism. This dissolution growth
model leads to patterns very similar to the experiments.
It can also be used to calculate the evolution of macro-
scopic variables with time, such as the injection pressure.
The assumptions required to build the model are the
three basic assumption of DLA (flow law obeying a La-
place equation, constant pressure on the boundaries, and
random growth) plus another one describing the chemi-
cal dissolution which we shall discuss now.

The etching which causes the branch enlargement is a
diffusion-limited process. This means that the chemical
reaction between pure water and plaster occurs instan-
taneously and that the overall kinetics is limited by the
removal of the dissolution products from the solid-liquid
interface both by molecular diffusion and by convection
(when the fluid is moving). Thus, the rate of etching is a
function of the velocity of the fluid. The branches where
the velocity is high are etched more rapidly, which in-
creases their permeability and consequently the velocity.
On the other hand, in the branches with low velocities
the water becomes rapidly saturated and hence nonreac-
tive: They cannot grow any more and will keep their
sizes until the end. This mechanism is reminiscent of un-
stable fronts, where the development of a few large
fingers inhibits the growth of smaller neighboring fingers
(the screening effect).

We can model the enlargement of one branch by the
enlargement of a straight tube in which flows a reactive
fluid at a constant velocity. If we assume a dissolution
kinetics limited by molecular diffusion, a first approxi-
mation of the increase of the local radius p at a fixed
point versus time ¢ is given by solution of the diffusion
equation in a capillary. We get the relation p~1>* for
long times.!'? For constant flow rate, the total volume V'
is proportional to time and the evolution of the radius is
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p~V?3¥4% This law ignores the finite solubility of the
medium in the fluid and assumes a constant velocity
through the channel (the thickness of the etching must
be small in comparison with the radius). The main idea
of my model is to keep track of the cumulative volume V
which flows through a channel by means of a counter m
and subsequently to compute the actual branch radius.
The structure is generated in the following way:

(1) With each particle of the cluster are associated
two counters. The first counter will contain its distance /
from the seed particle, walking along the branches (the
chemical length!®), while the second counter is used to
count the number of particles m sticking on the “down-
stream portion” of the cluster.

(2) The first counter is set when the particle sticks to
the cluster, assigning it the / of the particle it is stuck on
plus 1.

(3) Now, we walk toward the seed along the branch
(we just have to find the adjacent particle the / of which
is equal to the one on which we are, minus 1) increment-
ing the m of each particle by one unity, until we reach
the seed.

(4) The process is iterated by our allowing another
particle to diffuse randomly from far away.

(5) At the end of the simulation, the counter m of
each particle contains exactly the mass of the down-
stream branches, and it is this value which is used.

In the first approach, I used a simple law p =bm? (as-
suming ¥ ~m) with B chosen to represent the physical
process studied (8= % with the previously described as-
sumption). This computer-generated structure is now
visualized by plotting on each particle position a disk of
radius proportional to the local channel radius p. In ad-
dition, we can plot only the points which represent a
large enough radius, higher than a critical value p.. This
cutoff simulates the limited resolution of the actual ex-
perimental system. Figure 2 displays two structures ob-
tained for different values of the parameters. Of course,
it may happen that a branch is wide enough to hide
small neighboring ones: This is similar to the experi-
ments in which the radii of the channels become larger
than the grain size and then extend over several pores
which could have been previously partially etched.

As a variation of the previous model, I computed the
local radius increase at each time step, instead of incre-
menting m (step 3 in the above algorithm). I chose dif-
ferent growth laws, taking into account the local radius
and flow rate, but the appearance of the final patterns
did not change significantly [Fig. 2(c)].

During the pumping of the pure water, the injection
pressure Pi;; was also measured (with the external pres-
sure as reference) and decreased linearly versus the loga-
rithm of time. For understanding this physically, I used
the notion of equivalent structure radius R, defined from
Darcy’s law for radial flow,

Pinj = (}lQ/Zﬂ’kb )ln(Rw/Re).
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Physically, R, corresponds to the radius of the disk in
which there is a negligible pressure drop. The fact that
the experimental pressure decreases linearly versus the
logarithm of time ¢ indicates that R, has the form

R, =R (t/T)%
therefore
Pini/ (uQ/27kb) = — alnt +const,

with T being a characteristic time. I found experimen-
tally* that @ =0.7 = 0.1, which is significantly different
from the stable displacement case. Indeed, suppose the
rock were dissolved uniformly (i.e., radially, in a circular
way). Then, neglecting the pressure drop in the dis-
solved zone, we should get Re~\/t_ and therefore a =0.5.

My model allows us to predict this experimental be-
havior of the pressure versus time. Consider a disk of
porous medium of radius Rey. By injecting a reactive
fluid at the center, we get a dissolution structure de-
scribed by the above model. We can distinguish three
zones (Fig. 3). Close to the center, the channels are
wide and the pressure drop is actually negligible (zone
1). At the periphery (zone 3), the plaster is still intact
and the pressure varies radially according to Darcy’s
law: P(r) ~In(Rex/r). In the intermediate zone (zone
2), from r =R, to r =Ry, the flow is shared between the
channels and the porous medium. In the limiting case
where we can neglect this transition zone
(R, =R =Ry), we have the trivial result Piyj~In(Rx/
Ry). Ry corresponds to the growth region of the cluster,
and so it scales!®!> like the radius of gyration,
R;~N"YP_ N being the total mass of the cluster and D
its fractal dimension; /V is proportional to the time ¢, and
the injection pressure varies like —D ~!'Inz. The experi-
mental value a =0.7 £ 0.1 agrees qualitatively with this
simple approach.

However, we showed* that R, is significantly smaller
than Ry, which indicates that the transition zone actually
exists. My model allows us to quantify its effect. I
represent each portion of the actual pattern which is em-
bedded in the porous medium by two media in parallel, a
channel of radius p(r) (in which I assume Poiseuille
flow), and a piece of porous medium (in which I assume
Darcy flow). A parameter B describing the relative per-
meability of the porous medium versus the channels is
then naturally introduced as the ratio of the prefactors of
the two flow laws. I first compute at a given time (for a
given structure size Ry) the fraction ¢ of the total flow

FIG. 2. (a) 10000-particle DLA cluster plotted while ac-
counting for the cumulative effect according to the law
p=A(m/N)? with 4 =10 lattice units, 8=+, and p,=0.01
lattice unit. (b) Same cluster as in (a), but with 4 =20 and
p.=0.1. (c) Same cluster as in (a) but the channel width is
computed at each time step. 4 =15, p. =0.
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Etched channels
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FIG. 3. Schematic representation of the different zones in a

radial dissolution experiment and pressure profile (arbitrary
units).

flowing in the channels, versus the distance r from the
origin. The pressure profile P(r) along a radius of the
disk is then calculated by integration of Darcy’s law
from the periphery (r=R.), the flow rate being
Q1 —¢). The plot of Py,j=P(r=0) vs R, (Fig. 4)
displays a linear behavior in a wide range of values of B
(the limiting case Ry =Ry discussed above corresponds
to B=0).

This model should be applicable to other physical pro-
cesses displaying a cumulative effect, e.g., dielectric
breakdown,’ viscous fingering, and diffusion-limited po-
lymerization.'® Further support for the idea presented
here comes from theoretical'®!” and experimental'®
studies of viscous fingering when the viscosity ratio is
large but not infinite. One finds an enlargement of the
branches just as in Fig. 1.

In summary, I describe simple dissolution experiments
yielding fractal structures, and develop a new model
based on physical laws which produces patterns very
similar to the experimental ones. This model is the first
to describe cumulative effects in breakdown phenomena.
In addition, I predict the behavior of the injection pres-
sure versus time, in very good quantitative agreement
with that observed experimentally.

I wish to thank R. Lenormand and E. Touboul for
helpful discussions. I am especially indebted to H. E.
Stanley for his comments on the manuscript. I also
thank J. Nittmann and F. Rondelez for pertinent re-
marks.
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FIG. 4. Dimensionless injection pressure vs dimensionless
time (¢/T) predicted by my model in the case of finite values
of the parameter B.
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