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Proton mass corrections to the Lamb shift of hydrogen of order a(Za) m /M are evaluated. These
contributions are expected new terms beyond those given earlier for recoil eA'ects to the self-energy of a
bound electron in the external-field approximation. The new contribution of this order is —0.53 kHz,
thus making the complete radiative-recoil correction of this order —2.53 kHz.

PACS numbers: 31.10.+z, 34.50.Fa, 35.20.Vf

Various aspects of the 2S~y2-2P~g2 Lamb shift in hy-
drogen have been reviewed in recent years by Lepage
and Yennie, ' Kinoshita and Sapirstein, and Bhatt and
Grotch. The comparison of theory and experiment has
historically provided one of the most significant low-

energy tests of quantum electrodynamics. A numerical
calculation by Sapirstein, " done for the ground state of
hydrogen, provided confirmation of the corresponding
work of Mohr, and thus supported Mohr's theoretical
Lamb shift, which disagreed with the analytical value
given earlier by Erickson. It is now believed that
Mohr's value is correct and that the error estimate of Er-
ickson was too optimistic. The most recent experimental
values of the Lamb shift are those of Lundeen and Pip-
kin and Pal'chekov, Sokolov, and Yakovlev.

At the level of present experimental accuracy, the
theoretical Lamb shift is very sensitive to the elec-
tromagnetic structure and the finite mass of the proton.
A relatively new result on the electromagnetic radius of
the proton, (rz)'t =0.862(12) fm, is significantly
different from the older value' [0.805(11) fm]. These
values would imply contributions to the theoretical Lamb
shift which diAer by about 20 kHz. On the other hand,
the radiative-recoil contributions of order a(Za) m /M,
the pure-recoil corrections of order (Za) 6m /M, and the
two-loop nonrecoil binding of order a (Za) m could also
be as large as 10 kHz. Hence it is necessary to compute
these unknown contributions in order to predict the
theoretical value with better precision.

Recently, we have considered the modification of the
general radiative Lamb-shift calculation technique of Er-
ickson and Yennie" to incorporate proton recoil correc-
tions. Results of an analytical evaluation of proton mass
corrections to the Lamb shift, by considering the self-
energy of an electron in the so-called external-field ap-
proximation, have been reported. The leading terms"
of the order

(m /M)a(Za) [Co+Ctln(Za)+C2ln(m/AF. „)]
were systematically derived and parts of the new
radiative-recoil contribution of order a(Za) sm /M con-
tained in this self-energy were identified. In that paper
we indicated that additional contributions of the same

order will also arise from corrections to the external-field
approximation. In the present paper, we report the re-
sult of the calculation of these contributions, which arise
by considering the two-photon exchange kernels not in-
cluded in the previous approximation.

We outline here the important steps of this calculation
and postpone the detailed description for a more corn-
plete publication. The interaction kernels involving the
two-photon exchange are shown in Fig. 1. The radiative
photon is on the electron line. The correction on the
external line is necessary, as usual, for the consistent
cancellation of ultraviolet divergent terms. It is impor-
tant to note that from the ladder exchange diagrams, the
contributions corresponding to the on-shell positive-
energy proton are subtracted. These constitute all terms
which are already included in Ref. 3.

The calculation follows the standard methods' for
finding the amplitude for the perturbation in question.
In terms of the amplitude, hK, the energy-level shift is
given by

hE„=Jr d r d r' lt(tr')ihK(r', r)y„(r),
where y„(r) is the momentum-space solution for the
atomic n state of the external-field equation [Eq. (2.9) of
Ref. 3].

The construction of hK is quite involved. The radia-
tive correction to the electron lines with two photons ex-
changed to the proton may be written as L, . This in-
cludes external and internal self-energies, vertex graphs,
and the spanning diagram (Fig. 1). The calculation of
L, proceeds in a manner similar to that of Sapirstein,
Terray, and Yennie, ' in their evaluation of radiative
recoil to hyperfine structure. After mass renormalization
the various radiative corrections are combined without
carrying out conventional on-shell renormalization. This
procedure has the advantage of allowing the ultraviolet
divergences to cancel, as they must because of the Ward
identity, while not introducing spurious infrared prob-
lems created by the renormalization procedure. Of
course these spurious terms would ultimately cancel, but
in practice the cancellation is cumbersome to achieve.

For the analysis of the radiative photon contribution to
L, we use the Fried- Yennie gauge. ' This gauge pro-
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(c)
F'&G. l. Two-photon exchange perturbative kernels contributing to the radiative-recoil corrections to the Lamb shift of order

a(Za) m /M: (a) self-energy, (b) vertex, and (c) spanning photon graphs. The dot on the proton propagator in the ladder ex-
change graphs indicates that the on-shell positive-energy proton term has been subtracted away. The cross on the electron line in
the self-energy graphs indicates the usual renormalization mass correction, 8m.

vides two distinct advantages: (a) It is straightforward
to prove that to order a(Za) m /M contributions arise
only from two-photon exchange diagrams. Moreover,
the external momentum can be set to zero in AK of Eq.
(1). (b) Within this gauge, for zero external momenta,
the individual graphs are free of infrared singularities,
and thus we do not have to rely on delicate cancellations
betweeen diflerent graphs to obtain a finite expression.

The external-field approximation was formulated in

the Coulomb gauge for the exchanged photon, but the
actual computation was done in a gauge-invariant
manner. The correction terms we are seeking have also
been shown to be gauge invariant. ' We find that use of
the Coulomb gauge for the exchanged photons provides
the most transparent way to analyze additional correc-
tions, and moreover furnishes the clearest continuity with
earlier work. '

To understand this more fully we shall briefly discuss
the nonradiative-recoil corrections, as given in Ref. 16,
and their relation to the current work. In Ref. 16 the
recoil corrections to fine structure of order (Za) m /M
contribute to the Lamb shift, and in the Coulomb gauge
arise from (a) double Coulomb interaction, (b) single
transverse photon, and (c) two transverse photons.

For the evaluation of (a) the four-dimensional ex-
change photon loop integration d p contains various
poles in the variable pp, but the recoil contribution
comes only from an electron pole. Moreover, the loop
momentum is high enough so that the external momenta
can be set to zero. The resulting integration over ~p~

poses no difhculty and exhibits no infrared behavior. In
the present work we calculate the radiative correction to
this Coulomb-Coulomb interaction. The contribution to
the recoil effect (beyond the external-field approxima-
tion) again comes only from electron poles in the vari-
able po. The pp integral is then carried out analytically
and is followed by three-dimensional numerical integra-

tion over parametric variables x, y, and the loop three-
momentum

~ p ~
.

Next consider the single transverse photon term. For
nonradiative recoil this was a particularly troublesome
term since an infinite number of Coulomb interactions
had to be considered in the interval between emission
and absorption of the transverse photon. The situation is

quite diferent when the radiative corrections are exam-
ined. In the Fried-Yennie gauge it is established that to
order a(Za) m /M the contributions come only from
two-photon exchange and that the external momenta can
be set to zero. Thus, to the desired accuracy, Lp; is pro-
portional to p;. This leads to a zero result when multi-
plied by the transverse photon factor 8;~

—
p;pz/p .

Let us now turn to the double transverse contribution
of Ref. 16. This contribution is a "seagull" diagram
which is not contained in the external-field approxima-
tion. In the external-field approximation the double
transverse term couples only positive-energy proton
states and is of order 1/M . In contrast to this the
seagull is of order 1/M and arises from a coupling of
positive-energy initial and final states to negative-energy
intermediate states. The contribution of the seagull to
nonradiative recoil required retention of external mo-
menta in order to cut ofI an infrared divergence of the
loop integral on ~p~. That divergence occurred when
both exchanged photons became on shell at small mo-
menta. The appearance in the result [Eq. (4.36) of Ref.
16] of lna is a remnant of that infrared behavior. When
we consider the radiatively corrected seagull contribution
circumstances are quite diferent, and the infrared prob-
lem does not occur. The reason for this is to be found in

the low-energy theorem for Compton scattering. In
eAect, all radiative corrections to the electron line for
low-frequency Compton scattering vanish since the low-

frequency limit must give the Thomson result with a re-
normalized charge and mass. The charge renormaliza-
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tion occurs only through vacuum polarization eAects on the photon lines. Thus the seagull graph, which is a contribu-
tion beyond the external-field approximation, and thus requires no lower order subtraction, is free of any infrared
difTiculties.

We find that for P states the contribution of this order is negligible and for S states we obtain

AE„=[a(Za) m /n M]I, (2)

where

2 p'1 «p4 p)
3

Re „dpJ dp 4
3 ( 2 +

100(ip4,p) 10o( p /2M, p)
p 2 + (p 2 ) 2/4M 2 (3)

with l, the electron line radiative correction defined by

L, =—i n2(4x a)'1
m (2') ' (4)

Here L„ is the total electron side. At this stage I„ is a
two-dimensional integral of an extremely complicated
expression. We shall not present its explicit form in this
paper but will publish it in a more complete article. We
wish to remark that in the Coulomb gauge it is necessary
to retain terms proportional to exchange photon momen-
ta p, or p since these make a nonvanishing contribution
when they appear in /00. In the Feynman gauge these
terms would not be needed since they are gauge terms
which would disappear when contracted with the proton
side of the graph.

Equation (3) is the form obtained after carrying out a
Wick rotation of the po contour integration. After this
change, po was replaced by ip4. The evaluation of I is
carried out by calculating separately Ioo and I;; pieces.
For Ioo, note the presence of a subtraction which corre-
sponds to removing from the double Coulomb piece that
which is already contained in the external-field approxi-
mation.

For Ioo, we first carry out the p4 integral analytically
by closing the contour of integration in the upper half of
the complex plane. There is a pole at p4=ip /2M but at
this pole the numerator vanishes as a consequence of the
subtraction. The remaining poles are contained within

lpo(ip4, p) and these all produce recoil corrections. In
fact, at these poles we drop the denominator factor
p /4M compared to p4. There are many contributions
to Ipo and after the analytic evaluation of the p4 integra-
tion we are left with an integral on x, y (Feynman pa-
rameters), and p. After transforming the p integration

Iop = —0.265 + 0.004,

where the error quoted is statistical. The numerical in-

tegration was carried out by use of Monte Carlo pro-
gram VEGAS.

For Ioo it was economical to carry out the p4 integral
analytically since only electron poles contributed, but we
find that the I;; or seagull term is easier to evaluate by
direct four-dimensional integration. We transform both

p4 and p to variables which range from 0 to 1. It turns
out to be extremely useful to rearrange the various terms
of l;; in order to avoid spurious infrared problems con-
nected with small p4 and p. The low-energy theorem,
whose validity we have directly verified for our expres-
sion, guarantees the finiteness of the integral by ensuring
that 1;; vanishes as p4 and p approach zero. Neverthe-
less, diferent parts of I;; may not have this property, and
thus a rearrangement prior to numerical integration re-
sults in much better stability and smaller errors.

Our result is

I;; = —0.150 ~ 0.001

for the seagull radiative-recoil contribution.
Combining Eqs. (2), (5), and (6) we find a total

correction to the external-field approximation for S
states of

hE„= [a(Za) m /n m]( —0.415 ~0.004). (7)

Combining this with our previously published result in
the external-field approximation [Eq. (5.1) of Ref. 3], we
obtain the complete a(Za) m /M correction,

! to an integral from 0 to 1 we have straightforward
three-dimensional numerical integration. Our result is

h,E„=a(za)' m'
[ —, ln2 —8+ —, +,» + ( —0.415 ~ 0.004) ].

n

For the 25 ~/2-2P ~y2 Lamb splitting of hydrogen this
amounts to a correction of —2.5 kHz. It should be noted
that the correction to the external-field approximation is
small but not negligible.

We have also studied recoil eAects on vacuum polar-
ization (VP). The reduced mass correction to the VP on
a single Coulomb interaction has been given earlier"
and is about 0.4 kHz. Other sources of such terms come

!
from VP on a single transverse photon and from VP
corrections to the nonradiative recoil discussed earlier.
To analyze each of these terms we use the vacuum polar-
ization potential as given by Brodsky and Erickson. '

We find that such terms either contribute an additional
power of a or are numerically much smaller than those
which are of interest. For example, the recoil correction
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with two Coulomb interactions, one of which has VP, is

less than 0. 1 kHz and the corresponding expression with
two transverse photons (seagull) is even smaller than
this. Thus the largest mass correction to a(Za) m terms
involving VP is the reduced mass term above, which has
been given before.

In conclusion we see that the total radiative-recoil
correction to the Lamb shift is not large enough to
significantly alter the status of the comparison between
theory and experiment. As pointed out in the introduc-
tion there are still other unknown contributions, namely,
pure recoil of order (Za) m /M and the two-loop non-

recoil binding corrections of order a (Za) m which
could produce sizable corrections. Finally, we note that
the mass dependence of the terms we have calculated
scale in such a way that we can infer the corresponding
terms for muonium. Instead of —2.53 kHz for hydrogen,
we obtain —22.3 kHz for muonium.
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