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Mean-Lifetime Measurements within the Superdeformed Second Minimum in ' Ce
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A rotational band has been studied in ' Ce to a spin above 506. Lifetime measurements have result-
ed in a large quadrupole moment corresponding to a deformation P—0.5. This is consistent with the mo-
ment of inertia determined from the energy-level spacing. These data are the first measurements of col-
lectivity of discrete lines at high spin within the superdeformed second minimum.

PACS numbers: 23.20.Ck, 21.10.Re, 27.60.+j

Nuclei are known to contain states with a much higher
deformation than that seen in ground states. These su-
perdeformed structures have been of considerable in-
terest for many years. ' One of the best known examples
is fission isomers. Evidence was found for superdefor-
mation at high spin in ' Dy from y- y energy correla-
tions within the continuum. The first experimental indi-
cation of a superdeformed structure that decayed by
discrete-line gamma transitions was found in ' Ce. A
sequence of states was observed to beyond spin 406,
whereas the ground-state sequence was only seen to spin
306. Some spectacular data have recently been pub-
lished on ' Dy showing a superdeformed band also de-

caying by discrete gamma transitions, but now to spin
606. In both cases the moment of inertia was used to
determine the deformation giving, assuming a rigid body,
P—0.45 (' Ce) and P —0.6 (' Dy). The determination
of transition strengths is a much more reliable way of
deducing the deformation. Such measurements were at-
tempted on continuum data in ' Dy, but only resulted in
limits. In this Letter we report measurements of mean
lifetimes for the states in ' Ce. The measurements
confirm superdeformation and extend the band beyond
506.

The experiments were carried out at Daresbury Labo-
ratory using the TESSA3 spectrometer. This is similar

TABLE I. Gamma-ray energies, relative intensities, and mean lifetimes.

E„
(keV)

809
865
929
995

1060
1127
1195
1264
1335
1409
1488
1567
1652
1742
1836
1930
2030

20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52

Relative
intensity'

85(10)
100(7)
110(12)
103(13)
105(9)
91(3)
94(7)
84(3)
62(11)
51 (9)
29(7)
39(3)
46(S)
21(7)
25(10)

Observed
Fb

0.50(3)
0.62(1)
0.74(2)
0.80(2)
0.82 (1)
0.85 (1)
0.89(1)
0.91 (1)
0.93(1)
0.93(1)
0.94(2)
0.94(2)
0.99(2)
0.98 (3)

Apparent
r (fs)'

435(50)
280(12)
170(15)
125(15)
108(8)
88(7)
62(6)
50(6)
37(6)
37(6)
32(11)
32(11)

&15
&25

85 (30)
90(20)
40(17)

&25
&30

20(10)
14(»)

&20
&10
&15
&15
&35
&10

'Normalized to 865 keV 100, equivalent to 5% of the 4+-2+ intensity in ' Ce.
The attenuated Doppler shift F is the ratio of the average velocity at which each state decays to the ini-

tial recoil velocity.
'No feeding correction.
Corrrected for feeding.
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to TESSA2, but has twelve bismuth germanate (BGO)
suppressed germanium detectors in addition to the 50-
element BGO array. Three experiments were per-
formed, all using the reaction ' Mo( S,4n)' Ce. In
each case the BGO array was used to select gamma rays
in ' Ce and events were recorded corresponding to two
or more coincident suppressed detectors. The first used a
1-mg-cm 2 '~Mg target on a gold backing (15 mg
cm ) at a beam energy of 150 MeV; approximately
2 x 10 events were recorded and mean lifetimes deduced
using the Doppler-shift-attenuation method. ' The other
experiments employed thin ' Mo targets to look for
states at higher spin. Over 3 x 10 events were recorded
at beam energies of 150 and 160 MeV.

The data have allowed the band to be extended beyond
506; the transition energies are given in Table I. Previ-
ously we showed that this band decays into the yrast .e-
quence at spins 16 and 18; the linking transitions were
not identified. There was no indication in the new high-
statistics data of discrete linking transitions below 3
MeV. In what follows it is assumed that 2A are removed

by the unseen linking transitions and that the decays in

the band are stretched E2's. The data are compared to
the results of a theoretical calculation" in Fig. 1. The
band lies (4-6) A higher in the calculations and the lines

are curved even though a constant deformation is pre-
dicted. The relative intensities of gamma rays in the
band are given in Table I. The relatively strong popula-
tion (5% of the 4+-2+ transition) of such high-spin
states allows further spectroscopic measurements to be
made. The highest transition seen in the band has an en-

ergy above 2 MeV, corresponding to one of the highest
rotational frequencies (& I MeV/6) at which discrete
lines have been studied in heavy nuclei.

The thin- and backed-target data are shown in Figs.
2(a) and 2(b). The spectra clearly show wide peaks
below 1150 keV for the backed target indicating measur-
able lifetimes. The transitions from higher-spin states
are the same in both spectra indicating short lifetimes.
Standard techniques ' using a centroid shift analysis
gave the results in Table I and Fig. 3. The average recoil
velocity ((v/c cos9) ) at which each state decays was
determined from the data taken at 35' and 145' and is
independent of the unshifted transition energy. The data
were also used to determine the attenuation factor F
(Table I), a calculated initial recoil velocity being used
to determine the full Doppler shift. The smoothness of
the data points (Fig. 3) as a function of spin indicates no
significant slow side feeding into the band at high spin;
the observed line shapes also show no slow component.
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FIG. 1. Spin (I) vs gamma-ray energy (E„) for two bands
in ' Ce. The experimental data are for the yrast band (trian-
gles) and the superdeformed band (circles). Their calculated
counterparts are also shown (pairing not included), yrast band
(dot-dashed line) and superdeformed band (dashed line).

FIG. 2. Partial gamma-ray spectra from the reaction
Mo( S,4n) '3 Ce. The data are a sum over all detector an-

gles (35',90', 145'), the gains being matched assuming a full

Doppler shift. The spectra are the sum of several gates in the
superdeformed band. (a) Thin target, labeled by spins; (b)
backed target, labeled by gamma-ray energies.
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