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Origin of Asymptotic Freedom in Non-Abelian Field Theories
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The origin of asymptotic freedom is clarified by a simple probabilistic argument: It is much more
difficult for balls to point out the same direction than sticks and disks. This fact is used to show that the
effective potentials of the two-dimensional O(N)-invariant a models (with hierarchical kinematical ener-

gy terms) are driven into the high-temperature region by the Kadanoff-Wilson block-spin transforma-
tions, if N is larger than or equal to 3.

PACS numbers: 11.15.Ha, 05.70.Jk

Though it is widely believed that non-Abelian sym-
metries are responsible for mass generations in two-
dimensional (2D) cr models' and quark confinements in
4D non-Abelian lattice gauge theories, their roles are
still not well understood. For example, the existence of
instantons may be significant, but we do not know to
what extent configurations of instantons saturate the
functional integrals. On the other hand, asymptotic free-
dom is important, but the origin of this phenomenon
seems to be hidden by rather complicated perturbative
calculations. Therefore any discussion has been hard

beyond perturbation.
In this Letter, I clarify the origin of the asymptotic

freedom by an easy probabilistic argument, and I use it
to show that there exist no long-range orders in 2D
O(N)-invariant a models which have hierarchical
kinematical energy terms due to Dyson, Wilson, and
Ma, if (and presumably only if ) N is larger than or
equal to 3. See also, Gawedzki and Kupiainen and
Bleher and Major for recent study in this direction, and
Ito' for another type of hierarchical model.

As a typical example, I consider the Gibbs measure of
the 2D O(N)-invariant o model

p(dy) =(Z~) 'exp[ —
—,
'

(y, ( —at, )y)]Q„go([y(x)]2)dy(x),

where A= [ —L /2, L /2) g Z (L is an integer larger than or equal to 2 and K is an arbitrarily large integer) is a
rectangular set of lattice points, p(x) =(pt(x), . . . , gatv(x)) E R is the spin variable at the lattice point x 6 A,

(x,y) C A

Ix —yt =i

ly(x) —y(y) ] ' (2a)

(3)

where A„=L "A g Z' = [—L "/2, Ltr "/2) ' g Z

=+2[y(x)]' — g tt(x) y(y) (2b)
X (x,y) CA

fx —y/-1

is the lattice Laplacean restricted to A, and Z~ is the normalization constant (partition function). Moreover
go(p ) =exp[ —Vo(p )] is the single-spin distribution function and especially go(p ) =6(p —tc) for the Heisenberg
models.

To see the eA'ective interactions at long-distance scales, it is convenient to use the block-spin transformations

p'"'(y) =J"p'" "(y) Q 8(y(x) —(Cy)(x)) Q dy(x),
x C A„ xEA„

l "'(y) =(Z, ) ' p[ —
—,
'

(y, ( —& )y)]+go([y( )l'), (4)

and

C: [y(x): x C A„,] —[(Cy)(x): x e A„]

is defined by

(Cy) (x) =L 2 g y(y). (5)
y P i:l(LX)

Here &(Lx) denotes the square of size L XL, centered at Lx, whose sides are parallel to the axis. Consider the first step
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of' (3) neglecting spins outside &(0). So the effective potential Vi (Pz) is roughly given by

g (v ') =exp[ —Vi(v ')] =e "'P(~')
where P(p ) is the probability density for L gp(x) =p and E(p ) is the most probable value for —,

'
(p, ( —AA)p)

which is approximately estimated as 2L I~
—2L p by Eq. (2b). Here p=llpll. On the other hand,

p OO

P(p ) =constJI 6(L P
—Jag„s(x))Q ds(x) =const& j 'd&Eo(e' " ")Eo'(e ' ' "), (7)

where Eo denotes the expectation value with respect to the unit sphere S' ' = [s=(si, . . . , s~) E R: Ilsll = lI and
Eo(e"")=J i+(~iq1(x)/x '+ i . For small p ((L ', e&0), the central-limit theorem implies'' that P(p )
=constexp[ —constNL p /vl. However, tor large p which is important for the present purpose, ''

P(p ) =constexp[const(N —1)L ln(1 —p /x)]

(constants &0), which thus drives go(p ) =6(p —x-) into a function gi(p ) which has a peak around at p
—const(N —1).

We wish to continue this process. One difficulty is that the original lattice Laplacean (2a) yields complicated nonlo-
cal interactions, and so I use hierarchical Laplaceans due to Dyson which realize the approximate renormalization re-
cursion formulas invented by Wilson and Ma

K+1
—,
'

ly, ( —ah, t. )y) =(4L')
n =

1 x C A„y,y' E f-j(Lx)

[(C" 'y)(y) —(C" 'y)(y')]' (9)

which should be compared with the original Laplacean Eq. (2a). In fact by the change of variables (C" 'p)(x)
=(C'P) (x)+z„ i(x) with (Cz„—i)(x) =0, where x e A„and x E &(Lx), it is easy to find

Z '
JI exp [ia (P(x ) —P(y ) ) + —,

' (P, (Ah, t )P) ]Q dP =exp [ —consta (Inl d (x,y ) +0 (I ) )],

where d(x, y) is the hierarchical distance between x and y defined by minIL": both L "x„and L "y„ lie in

[m„—2, rn„+ 2 ) for some m„e Z (p =1,2) with k =0, 1, . . .]. So Eq. (9) approximates Eq. (2a) with a reasonable
ace U I acy.

In this approximation, Eq. (3) now reads

g„(v ')e '"'/4 = JI 6(y I 'g„y(x))Q—„f„ i(y'(x))dy(x),

f„ i(~') =g„,(~')e — '4,

where x C (0) and p =lip, since

(1oa)

(lob)

—g„[y(y) —y(y')l'= [+,y(y)]' —L'g, y'(y).

This is the approximate renormalization recursion formula considered by Wilson, Ma, Gawedzki, and Kupiainen (for
L =2). Note that the right-hand side (rhs) of Eq. (10a) is just the probability density for [p(x): x E &(0)] to form
the given block spin p.

Without loss of generality, I assume that suppgoC [O, x'l, rc»1, and then that suppg„C [0, lr] for all n Moreover, .

without loss, I set I =2, and I have

g„(y')exp( —y'/2) = Jt f„ i((y+z) ')f„ i((y —z)')dz, (I oa')

f.(y') =g„(y')exp( —y'/4) () 0),

(lob�')

where JV is a suitable normalization constant.
Proposition I For any f„ i (.s—uch that f„ i

) 0, suppf„ i& [O, ic]), if N) 3, then g„(x)e "i is monotone de-

creasing in x ~ xj'4. If % ~ 4, then

—[lng„(x )e "i']') + k
2X K

for x ) i~/4, where k =(N —3)/2.
Proof By the O(N) invaria. n—ce, set p = (p, O) and z = (s,u) E R x R ' so that the rhs of Eq. (10a') is

const x ff„ i ((p+ s ) + u )f„ i ((p —s ) z+ u )u ds du. Next insert 1 =f f dp dq 6(p —(p+ s ) —u )6(q —(p
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—s) —u ) and integrate over s E R and u E R~. Then

g„(x)e "l'=
~ dpdq e(p(p, q:x))[p(p, q:x)l "f, ((p—)f, ((—q),

1

A' Jx
where x =p, 0(p) = I if p ~ 0, 0(p) =0 if p & 0, and

p(p, q:x) =(p+q)/2 —x —(p —q) '/16x.

(12)

(13)

p(p, q:x) is monotone decreasing in x ~
~ p —

q ~/4, and then so are [p(p, q:x)] and 0(p(p, q:x)), and since
Ir~

~ p —
q ~, so is the g„(x)e "l for x ~ ~/4. For lV ~ 4, dilferentiate Eq. (12) to hnd

—[Ing„(x)e " ']'=(2x) '+kB/A,

A =J J" dpdq [p(p, q:x)]"f„)(p)f„—)(q),—

8 =„~JI dpdq [p(p, q:x)]" '[I —(p —q) /16x lf„((p)f.-—((q),

where (see Fig. I)

D = [(pq) 6 [Ov]: p(p q x) ~ 0, q ~ pj = {(p q): (2&x —&p)' ~ q ~ p ~ Irj.

Then

8/A ~ int[1 —(p —q)'/16x']/p(p, q:x) =(~—x) ' (p =q =v).
D

(14a)

(141 )

(14c)

Q. E.D.
This implies that the asymptotic freedom is quite probabilistic as well as geometrical' (i.e. , it is more diNcult for

balls to point out the same direction than sticks and disks), and has a nonperturbative nature. This proposition can be
used iteratively to show that if lV ~ 3, g„(x) converges to g, (x): g, (0) = I and g, (x) =0 for x&0. Though this con-
clusion holds for all lV ~ 3, I sketch a proof' in the large field region for lV &&3. Assume that —[Ing„~(x)]'~ a(x) for
x ~ v„—

&
(& v/4&& I), where a(x) is a positive increasing function such that a(v„—~) ~ Ck, C=O(1) —2 (say),

k =(N —3)/2. Decompose D into D~ and D2, where D~ =[(p,q) E D: x ~ q ~ p ~ Irj and D2=](p, q) E D: (2'
—Jp) ~ q ~ xj; see Fig. l. Thus

—[lng„(x)e l~]'=(2x) '+k(8~+82)/(A~+A2) ~ (2x) '+k min[8/A;j, (I S)

where A s (respectively 8 s) are defined by replacing D by D s in Eq. (14b) [respectively, in Eq. (14c)]. As for
8 ~/A ~, set p =x+ g, q =x+ g so that

p(p, q:x) =(g+g)/2 —(g —g) /16x=(j+g)/2, f„,( +xg) =f„,(x) exp[ —(a+ —' )g].

So

k ~ (I —e) [a(x)+ —,
'

l
2k

k+1
by introduction of a new variable t =g+g, where e=0(a '). As for Bq/A2, set

(16a)

p =po(q)+g, po(q) =(2' —Jq ) o x [0~ g~ x —(24~ —Jq ) ]
J1

and use the trivial inequality to find kBq/A2 ~ inf&k82(q)/Aq(q), where

A2(q) =fd&[p(po+Cq:x)] "f. i(pa+0), 82(q) =Jr d([p(po+gq:x)]" '[I —(pa+a —q)'/ 16x]f„&( p+og),

and these functions do not depend on f„~(q), q ~ x. An easy calculation [one may use p(pa+ g, q:x) =- g/2] yields

kB,/A, 2[a(x)+ —,
' l. (16b)

Proposition 2.—If N » 3 and —[Ing„—~
(x)]™a(x) for x ~ v„~ ( & x'/4 & I ) with a(x) satisfying the above as-

sumptions,

—[Ing„- ~+ I (x) ]
' ~ I [2k/( I + k ) ] ( I —e) j '[a (x ) —P] +P ( f ~ )

for x ~ Ir„- ~, where P =O((k —I ) ').
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line. ' '
The main idea in this paper was inspired through dis-

cussions with T. Miwa, S. Kotani, S. Kusuoka, Y. Higu-
ch i, T. H at tori, K.-I. Kondo, and T. Hara. I also
benefitted from discussions with K. Gawedzki and A.
Kupiainen while I was a participant in the project BiBoS
(Bielefeld-Bochum-Stochastik). I would like to thank
L. Streit, S. Albeverio, and Ph. Blanchard for giving me
the opportunity.

X

FIG. 1. Domain D and its decomposition into DI and D2.

By the symmetry p q, 0 ~ q ~ p is assumed. The parabola is

q
= (2Jx —Jp ) '.

This proposition can be improved in the following
form':

Theoretn 3.—(i) If N ~ 3, g„(x) converges to g, (x)
in the sense that —[lng„(x)]' — ~ as n ~ for all x.
(ii) I'or N ~ 4 (presumably for N ~ 3), there exist
strictly positive constants co & 0 and 0 & 6 & 1 such that
tc„=tc—nto for n =1,2, . . . , n =(tc —

I )/co, tc„
=6" "'tc„, for n ~ nq, and —[lng„(x)]'~ a„(x)) 0 for
x ~ tc„. Here lima„(x) =~ for all x.

Since ~„corresponds to the effective inverse tempera-
ture at the distance scale I "=2"', (ii) of Theorem 3 is

consistent with our intuitive images for the flows of the
effective interaction of the 2D Heisenberg models in low-
(Iarge-tc„) and high- (small-tc„) temperature regions.

The application of the present idea to the real system
is under progress, in which complicated nonlocal interac-
tions nsust be controlled. What is important is that the
effective potentials will be forwarded into the high-
temperature region (nonperturbatively) by the proba-
bilistic driving force. Quark confinement in 4D non-
Abelian lattice gauge theories will be proved along this
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