
VoLK.TME 58 2 FEBRUARY 1987 NUMBER 5

Nature of Spatial Chaos
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We present the two basic mechanisms leading to spatial complexity in one-dimensional patterns. They
are shown to be the counterparts of the horseshoe formation mechanisms studied by Melnikov and Shil-
nikov in dynamical systems theory.
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A lot of interest has been devoted these last few years
to the phenomenon of temporal chaos, ' which arises in

spatially constrained macroscopic systems as some forc-
ing parameter is varied. On the other hand, it is becom-
ing increasingly popular to study the pattern formation
and the transition to turbulence occurring in extended
systems.

The purpose of this Letter is to elucidate the nature of
spatial complexity of one-dimensional patterns. A pat-
tern will be termed spatially complex if it is described by
a chaotic, but stationary in time, solution of a given par-
tial diAerential equation. As in temporal systems, the
mechanisms of chaos can be classified according to the
mechanism of horseshoe formation. We show that the
two basic mechanisms are related to Melnikov's theory
of periodically driven one-degree-of-freedom Hamiltoni-
an systems, and Shilnikov's theory of two-degrees-of-
freedom conservative systems. In both cases heteroclinic
solutions of a differential equation play an important
role. They are naturally associated with defects. The

A, =pA+2» —A + vsin(kx).

When v=0, Eq. (1) possesses stable localized solutions
given by

D(x) = ~ Jp tanh[( —,
' p) '~ x]. (2)

For v small enough a reasonable Ansarz for a multide-
fect solution is given by

first mechanism has actually been identified in the con-
text of equilibrium systems, and is related to the pin-

ning of defects due to an external modulation. The
second one has to do with the intrinsic oscillatory nature
of the defects.

In all the examples from equilibrium physics con-
sidered so far, the origin of spatial chaotic behavior has
to be found in the very presence of a lattice. In macro-
scopic systems, the lattice, which is originally absent, is
introduced via the presence of a periodic forcing. In or-
der to illustrate the first mechanism we consider a simple
model. Let 4 be a real field obeying a Landau-
Ginzburg-type equation

~(x,r) =D;(x x;(r))+g, —
&, lD, (x x, (r)) D(— )]+—g,. &,

—(D, (x —x, (r)) —D( )], (3)

where D~ represents the single defect centered at x~. When we insert this expression in Eq. (1), the first solvability con-
dition leads to an equation for the defect's position,

dx/dz=q;+~K(x;+~ —x;)+q;-~E(x; ~

—x;)+yvsin(kx;), (4)

where E(x; ~
&

—x;) =D(x; ~ ~

—x;) —D(+. ~), D is the asymptotic form of D, qj represents the topological charge of
the jth defect defined as qj =Dj(+~) DJ( —~), r is a conveni—ently scaled time, and y is a given constant. This
equation has been derived in the dilute-defects gas approximation, that is when the interdefect distances are much
larger than the characteristic length of the defect cores. Equation (4) describes the dynamics of an assembly of over-

1987 The American Physical Society 431



VOLUME 58, NUMBER 5 PHYSICAL REVIEW LETTERS 2 FEBRUARY 1987

damped particles on a line with nearest-neighbor interac-
tions in an external periodic potential. Equation (1) only
admits chains of alternating attractive kink and antikink
whose effective interaction force reads

f(d) =4pexp[ —(2p)'~ d],

where d is the distance between two adjacent defects.
When v =0, the only possible static multidefect solutions
are thus found to be periodic, with an arbitrary large
period. These solutions are dynamically unstable, with a
characteristic evolution time —,

' (2p) '~ exp[(2p) '~ d].
This leads, in the case of a dilute gas, to very long tran-
sients before the system reaches its final equilibrium.
Eventually, Eq. (4) no longer describes the actual dy-
namics, and pairs of adjacent defects are annihilated.

When v&0, periodic solutions no longer have arbitrary
period. They are locked with the external forcing.
When the distance between defects is large enough the
third term dominates. In this limit the positions of the
defects are given by x; =2nn;/k, where the n s are arbi-
trary integers. This calculation thus demonstrates the
existence of chaotic behavior for Eq. (1). The stability
analysis is then straightforward: Whenever an x; corre-
sponds to a minimum of the periodic potential, the corre-
sponding state is found to be stable, otherwise it is unsta-
ble.

An alternative way to prove the existence of spatial
chaos consists of looking at Eq. (1) without its left-hand
side. For v=0, the ordinary differential equation thus
obtained is a one-degree-of-freedom Hamiltonian sys-
tem. When v&0, integrability is generically lost. More
quantitatively Melnikov's analysis can be used to show

explicitly the existence of horseshoes in this problem.
The other basic mechanism comes from Shilnikov's

work on horseshoe formation. It is again related with
the existence of a homoclinic or heteroclinic solution of a
differential equation. Since we are particularly interest-

f(d ) =g cos(Pd ) exp( —ad ). (6)

We consider the case where the only possible configu-
rations consist of pairs of defects and antidefects. This
situation is quite analogous to what happens in the model
previously discussed. There the dynamics was attractive,
because of the opposite signs of the topological charges
of two nearby defects. In the presence of spatial oscilla-
tions two defects of opposite topological charges can
have locally repulsive interactions. The consequence of
these oscillations is to stabilize a static configuration of
defects and to give rise to chaotic states. The over-
damped defect's dynamics obeys a gradient-type dynami-
cal system whose potential reads

ed in defects with nonzero topological charge, we focus
our attention on the heteroclinic case. A heteroclinic
solution of a dynamical system is a trajectory which
biasymptotically connects two equilibrium solutions. For
example, the defect described by Eq. (2) is a heteroclinic
solution of Eq. (1) without its left-hand side, which con-
nects the two equivalent equilibrium solutions ~ Jp.
The linear behavior around these solutions dictates the
asymptotic form of the heteroclinic solution. Lineariza-
tion of Eq. (1) leads to opposite real eigenvalues
a = +' (2p) '~ . Such equilibrium solutions are termed
(real) hyperbolic. Shilnikov's theory deals with homo-
clinic and heteroclinic solutions connecting complex hy-
perbolic equilibrium states. This very elegant theory al-
lows us to demonstrate the existence of chaotic trajec-
tories and to code them under general conditions. In the
same way that Melnikov's theory could be cast in the
language of defects, we now perform the same analysis
in Shilnikov's case. We first give, without any particular
model in mind, the equation to be satisfied by the Shilni-
kov defects, study it, and then consider two models of
physical interest which naturally display this kind of
chaotic behavior. Since now the defects present damped
oscillatory tails the interacting force reads

V[x, ] = [g/(a'+P')]g, . exp[ —a(x;+~ —x;)][Psin[P(x;~~ —x;)] —a cos[P(x;+~ —x;)]].
A direct minimization of V shows that local minima ex-
ist. Actually this potential is unbounded from below, in

such a way that the eventual evolution of the system can-
not be captured in the defect-dynamics picture. The
natural tendency of such systems is again to eliminate
the defects by pair annihilation. The major difference
between normal and Shilnikov defects is the possibility to
construct metastable states of periodic, quasiperiodic,
and even chaotic distributions of defects. Since our in-
terest is mainly in nonequilibrium systems, such metasta-
ble configurations, in practice, can have infinite lifetime,
and thus play an important role in the long-time behav-
ior of the system. The nature of the chaotic behavior for
Shilnikov-type defects is quite different from the one as-
sociated with the presence of a lattice. The oscillatory

interaction between defects leads to an infinite sequence
of possible equilibrium positions for the defects. Chaotic
configurations arise by picking these positions at random.

We now discuss two models of physical interest
displaying this kind of defect. First, an obvious generali-
zation of Eq. (1) reads

P& + ~&xx &xxxx

Adding the fourth-order derivative to Eq. (1) only makes
sense when the coeScient in front of the diffusion term is
of the order of Jp. In this case the behavior of the sys-
tem has to be represented in the two-parameter space
p-v. For v positive large enough, p being positive, Eq.
(g) can be reduced to Eq. (1). Thus in this limit, Eq.
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(8) displays normal defects. Let us consider for a mo-
ment the diAerential equation obtained by dropping the
left-hand side of Eq. (8). It is straightforward to check
that, on crossing the parabola p=v /8, the topological
nature of the equilibrium solutions ~ Jp changes from
real hyperbolic to complex hyperbolic. Thus the defects
present inside the parabola, spatial oscillations (see
F' I) With use of the previous technique the force be-1g. . 1

b E .t~een Shilnikov defects is, as anticipated, given by q.
(6) where g=4p, and a and P respectively represent the
real and imaginary parts of the corresponding eigenval-
ues. From a physical point of view Eq. (8) describes the
d namics associated with a so-called Lifschitz point. 'ynamic

We now turn our attention to a model which contains
richer behavior. Let A be a complex field obeying the
following partial

differential

equation:

A, =(p —
q )A+2iqA„+A„„—~A

~

A+aA"

(9)

experiments of the type performed by Lowe and Gol-
lub' for which model (9) has been devised. '

%'e have illustrated in this Letter the two basic mech-
anisms for spatial complexity of one-dimensional pat-
terns. The nature of spatial chaos is associated either
with the random pinning of defects with exponential in-
teractions by an external periodic potential or with the
exponentially damped oscillatory interactions between
defects, without external forcing. These mechanisms are
closely related to horseshoe formations in conservative
dynamical systems with one and a half' or two degrees
of freedom. The conservative nature of these systems is
a direct consequence of the parity symmetry x —x
which is not broken by a static pattern. The extension of
this work to a quasi one-dimensional pattern is straight-
forward. It amounts to taking into account phase varia-
tions transverse to the line defect. The variational na-

This model has been used in the context of commen-
surate-incommensurate transitions in both equilibrium"
and nonequilibrium ' ' situations. In the limit
p&&q, a Eq. (9) can be reduced to a phase-type
dynamics described by the overdamped sine-Gordon
equation

&, =&„„—ap " sin(n@). (IO)

It displays kink and antikink solutions, periodic array of
kink or antikink solutions, and periodic array of kink-
antikink solutions [see Fig. 2(a)j. The analysis of the
various solutions can be carried out in the same way as
before. Out of the phase approximation the kinks
present spatial oscillations, whose consequence, in partic-
ular, is to give rise to chaotic behavior [see Fig. 2(b)].
This kind of chaotic behavior is likely to be observed in

(b) cp

FIG. l. A typical asymptotic solution of Eq. (8) inside the
oscillatory defect's domain (p =2,v= —2). A pseudo spectral
code with 200 Fourier modes and periodic boundary conditions
has been used. Length of the periodic box =70, time step =0.2.
Initial conditions involve three Fourier modes: the fundamen-
tal, its fourth harmonic, and the seventh harmonic.

FIG. 2. Numerical simulations of the defect's dynamics Eq.
(4) in the repulsive case, without external forcing (v=0). The
interaction force corresponds to Eq. (6) (a)a for =0 and
a=0.3, (b) for P=0.2 and a=0.3. A fourth-order Runge-
Kutta routine with the same random initial conditions has been
used in both cases. The simulations involve 40 particles with
periodic boundary conditions. Time step=0. 5, total integra-
tion time =500.
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ture of the models considered in this Letter is not essen-
tial. The overdamped character of the defect's dynamics
is just related to the dissipative character of the basic
equations describing the physical system. Conservative
systems, as for example the sine-Gordon equation, would
lead to inertial dynamics for the defects. For mixed sys-
tems, inertia and damping are expected. An interesting
spatiotemporal complex dynamics should result from the
interaction between Shilnikov s kinks. Work in these
directions is in progress. The final question concerns ful-

ly developed spatiotemporal turbulence. We have de-
scribed here strong spatial chaotic behaviors and hope to
consider, in a future work, their weak coupling with
time-dependent eA'ects. Fully developed spatiotemporal
complexity involves more complex phenomena as for ex-
ample creation and annihilation of pair defects which
cannot be taken into account with the methods used
here.
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