Comment on "Heat Capacity of a Condensed Electron System in the Dilute Metal *n*-Hg_{0.8}Cd_{0.2}Te"

In a recent Letter,¹ Stadler and Nimtz reported measurements of the energy relaxation time τ_{ε} for hot electrons in *n*-Hg_{0.8}Cd_{0.2}Te in quantizing magnetic fields. Using a simplified energy-balance equation, they deduce the heat capacity C_v of the hot-electron system from the dependence of τ_{ε} on the electron "effective temperature" T_{ε} . They interpret a broad and shallow peak in C_v at $T_{\varepsilon} \sim 2$ K and the fall-off of C_v below this temperature as evidence that the system goes through a magneticfield-induced liquidlike phase and into a Wigner crystal at low temperatures.

In this Comment we argue that the data presented in Ref. 1 do not provide evidence for Wigner crystallization of electrons in this material. Rather, the data indicate that there is a decrease of τ_{ε} (and C_v , as calculated in Ref. 1) with decreasing T_e as T_e approaches the lattice temperature T_L (T_L =1.5 K in Ref. 1). We point out here that similar measurements of τ_{ε} vs T_e on insulating InSb made at zero magnetic field and at different T_L show essentially the same behavior.²⁻⁴ Therefore, in Ref. 1 the primary significance of the temperature range 1.5-1.9 K where C_v rapidly decreases is that it lies just above the experimental T_L . The fall-off of C_v in this range does not provide evidence for and should not be associated with the formation and/or melting of a Wigner crystal.

- M. Shayegan and V. J. Goldman Department of Electrical Engineering Princeton University Princeton, New Jersey 08544
- H. D. Drew Department of Physics and Astronomy University of Maryland College Park, Maryland 20742

Received 19 February 1986 PACS numbers: 71.45.Gm, 71.30.+h, 71.55.Jv, 72.20.My

- ¹J. P. Stadler and G. Nimtz, Phys. Rev. Lett. **56**, 382 (1986).
- ²J. P. Maneval, A. Zylbersztejn, and H. F. Budd, Phys. Rev. Lett. **23**, 848 (1969).
- ³A. P. Long and M. Pepper, Physica (Amsterdam) 117B & 118B, 75 (1983).
- ⁴G. Nimtz and J. P. Stadler, Phys. Rev. B **31**, 5477 (1985).