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Dimensionality Dependence of the Band-Gap Renormalization in Two- and Three-Dimensional
Electron-Hole Plasmas in GaAs
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We have investigated the band-gap renormalization due to many-body effects in electron-hole plasmas
in 2D GaAs-GaA1As multiple quantum-well structures. A comparison of these data with corresponding
3D data and calculations for both dimensionalities shows that the band-gap shift increases absolutely but
decreases in effective Rydberg units with decreasing dimensionality. The dimensionality dependence of
the band-gap shift is traced to different screening efficiencies in 3D and 2D systems.

PACS numbers: 71.35.+z, 73.40.Lq

Many-body effects in dense electron-hole plasmas
(EHP) in intrinsic semiconductors lead to a renormaliza-
tion of the fundamental band gap. In three-dimensional
(3D) semiconductor structures this effect is quantitative-
ly understood. A key result is the universal law of the
plasma-density dependence on the band-gap renormal-
ization. Scaled in the appropriate units of the materials
(effective Rydberg energy and Bohr radius) this relation
is independent of the band structure or other material
properties. '

Up to now there have been no systematic experimental
investigations on the relation between the carrier density
and the band-gap renormalization in quasi two-dimen-
sional (2D) structures. Transmission and photolumines-
cence measurements yielded only qualitative results.
In this paper we report high-excitation photolumi-
nescence measurements in GaAs-GaA1As multiple-
quantum-well (MQW) structures at low temperatures
(T(,tt ~ 2 K) and determine for the first time the quan-
titative relationship between the band-gap shift and the
carrier density in the 2D EHP. The experimental results
are compared with numerical and analytical calcula-
tions of the band-gap renormalization. We observe in
2D EHP much larger absolute band-gap shifts than
those which have been observed in 3D EHP. However,
if the band-gap shifts are scaled in the natural energy
units, namely the appropriate 2D and 3D Rydberg ener-
gies, our results show that the 2D band-gap shift is effec-
tively smaller because of the reduced efficiency of
screening in 2D EHP.

In our experiment we used high-quality GaAs-
Gap57Alp43As MQW structures grown by molecular-
beam epitaxy. They consisted of about 25 GaAs layers
with well widths L, between 21 and 83 A. The thickness

of the barriers Ltt was about 180 A to avoid coupling be-
tween adjacent wells. We characterized the quasi-2D
systems by excitation spectroscopy and obtained transi-
tion energies of the free excitons at the subband edges.
From the lowest excitonic transition between the first
electron subband and the first heavy-hole subband we
have determined the fundamental band edge in the quan-
tum wells at zero density by use of experimental values
for the excitonic binding energy determined by Maan et
al. '

In the high-excitation measurements the plasma was
generated with a pulsed dye laser. The pulse duration
was r~„„=10ns, much larger than typical relaxation
times in GaAs-GaAIAs QW structures. Therefore we
assume a quasistationary excitation of our samples per-
mitting a quasiequilibrium description of the EHP. In
Fig. 1 we depict photoluminescence spectra for a sample
with a well width of 21 A. With increasing excitation
power we observe a strong shift of the low-energy edge of
the spontaneous QW luminescence to lower energies (up
to 35 meV) and the spectra broaden drastically, clearly
indicating the formation of a high-density EHP. At the
highest excitation intensities even the center of the
luminescence band shifts to lower energies.

In order to obtain the plasma density, temperature,
and renormalized band gap we performed a line-shape
analysis in a simple 2D model: Electrons and holes are
distributed in parabolic subbands with a steplike 2D den-
sity of states. The subband energies are calculated for a
rectangular potential well with finite barriers on the
basis of the results of the excitation spectroscopy.

We approximated the realistic nonparabolic valence-
band dispersion' by using the bulk effective masses of
heavy and light holes. By comparison with calculated
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FIG. 1. Luminescence spectra and line-shape fits (solid
lines) for a sample of L, 21 A as functions of the excitation
intensity. (P0=500 kW/cm . )
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6'„ is a broadened delta function. If the spectra are cal-
culated from (1) and (2) without any broadening they
deviate from the experimental data at the low-energy
edge. Therefore we took a collision broadening y into
account phenomenologically in the form suggested by
Landsberg. ' This energy broadening y has a maximum
at the band edge and vanishes at the chemical potential.
It does not affect the linewidth of the spectra, which is a
measure of the EHP density.

The solid lines of Fig. 1 are typical results of our line-
shape analysis with use of 3D masses (ml, I, =0.45m„
mg, =0.08m, ) in the calculations. The agreement be-

dispersion relations it can be shown that these bulk
values give a good approximation of the exact values.
This is a consequence of the large band filling in the
present investigations. " Furthermore, we assumed com-
mon quasichemical potentials for the subbands of the
electrons and of the holes, respectively, and a common
temperature for all carriers.

With the assumption of momentum conservation for
the optical transition and a constant matrix element, the
luminescence spectrum is then given by

I(hro) a:g, ],J,m;mjf, (E;)fp, (EJ)

x B„(E;+Ei—h ro)dE; dEJ. (1)

The indices i,j denote the electron and hole subbands, re-
spectively. E; ~ are the subband energies, m; J are the
masses, and f, g are the Fermi distributions of the elec-
trons and holes. For allowed transitions Eq. (1) is limit-
ed by the usual selection rule (i =j). The common
quasichemical potentials p, e.g. , for the electrons, are
given by the relation

1 P12

n (cm )

FIG. 2. Measured density dependence of the band-gap re-
normalization for various GaAs-GaA1As MQW structures and
for bulk GaAs (Ref. 8). The density axes are comparable be-
cause they are based on the dimensionless interparticle dis-
tance r, . The 2D band-gap renormalization depends on the
density proportional to n)( as expected theoretically (Ref. 6)
(dashed line).

tween the experimental data and the fitted curves is very
reasonable. Plasma temperatures between 60 and 170 K
are observed under high excitation conditions. The ex-
cess energy of the carriers resulting from the non-
resonant excitation (hro1»„——2 eV) is not transferred
completely to the lattice under the experimental condi-
tions, especially in 2D structures where reduced carrier
cooling rates are observed. '

From the line-shape fits we obtained the plasma densi-
ties and the renormalized band edges in the high-density
plasma. Since we have determined the zero-density band
edge from the excitation spectra by correcting for the ex-
citon binding energy using recent experimental results
we were now able to determine the density dependence of
the band-gap renormalization.

In Fig. 2 we depict the band-gap shift as a function of
the 2D plasma density for the well widths of L, =21, 41,
and 83 A. For comparison we include data measured
previously in 3D GaAs structures under comparable ex-
perimental conditions. The relation of the density axes
of the 2D and 3D plasmas is based on equivalent inter-
particle distances r, obtained from nrP =(na(2n) ' and
4nr, /3 =(nap3D) ', respectively. For the Bohr radii we
obtained in 2D a value of ap2n =57 A (corresponding to
a mass of 0.45mp,. see Ref. 14) and in 3D a value of
ap3D 146 A.. Figure 2 displays two important results:

(i) For the same interparticle distance the band-gap
renormalization in the 2D plasma is significantly larger
than in the 3D plasma. We measure shifts of the band
edge between 25 and 45 meV for the 2D plasma,
whereas in the 3D case the shifts are below 20 meV for
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where

(4)

with

and

2' f (k)

Spq
'

exp[P(c;k —p;)]+ I
'

e;k =k ~/2m; (i =e,h ). (5)

In Fig. 3 we compare the results of the SPP with the
Hubbard modified RPA for T=O K and equal electron
and hole masses. The deviation between the calculations
is small indicating that the influence of the short-range
correlations is small in the investigated density range. In
addition, we calculated the 2D self-energies within the
dynamical SPP for the electron and hole masses of bulk
GaAs and a temperature of 150 K. In 3D the SPP is
known to yield results which are close to the universal
law of Vashishta and Kalia, which is also shown in Fig.
3 as a dashed line.

Figure 3 clearly shows that in the universal units Ryd-

all densities. The large absolute values of the band-gap
shift in 2D systems can be understood qualitatively by
the increase of the Rydberg energy by a factor of about
4 compared to the 3D case. As has been shown previous-
ly' for 3D systems the band-gap renormalization is ap-
proximately proportional to the Rydberg energy.

(ii) Within the experimental accuracy we observe no
well-width dependence of the band-gap renormalization
in the MQW structures. This is a strong indication that
the 2D limit is reached in all our samples.

The appropriately scaled experimental results for 2D
and 3D GaAs are compared with numerical calculations
of the band-gap shrinkage ~Fz in Fig. 3. The energies in
both cases are scaled with the corresponding Rydberg
energies, EoqD (Ref. 14) and EQ3D respectively. For the
experimental and theoretical GaAs-GaA1As MQW re-
sults we used a value of EpgD=19.9 meV. The experi-
mental bulk GaAs values are scaled by EQ3D 3.9 meV.

The 2D self-energies have been calculated in the
dynamical random-phase approximation (RPA) with a
single-plasmon pole approximation (SPP). The results
have been the same as those obtained from the dynami-
cal RPA. It is known that in 2D short-range correlations
are more important and the RPA is less satisfying than
in 3D. ' In order to investigate the influence of short-
range correlations we also calculated the 2D self-
energies in a Hubbard modified RPA in which the intra-
band dielectric function ' ' is given by

P; (q, ro)
e(q, ro) =ep 1 —g;-, p, 1+ —,

' fq/(q+kF)]P; (q, ro)

(3)
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FIG. 3. Band-gap shift kg scaled by the 2D and 3D Ryd-
berg energies vs the dimensionless interparticle distance r, for
2D and 3D (Ref. 8) GaAs structures. The numerical results
for a 2D plasma are calculated in a dynamical RPA with a
single-plasmon pole approximation (upper dot-dashed line:
m, mq, T 0 K; full line: m„mq bulk values, T 150 K)
and in a Hubbard-modified RPA (lower dot-dashed line:
m, mz, T 0 K). The universal 3D law (Ref. 1) is given by
the dashed line.

hEgpD =— 2

ln 1+ kc

&p kszD,

In 3D, where V, (r) =(e /ear)exp( —rk, 30), the band-
gap shift is thus

&Ee3n = —e k, 3D/eo. (7)

The Debye screening wave numbers are given by
k, qD=4ane /cokT and k, 3D (8rrne /eokT)' . The re-

berg energy and Bohr radius both experiment and theory
yield a band-gap shrinkage in 2D systems which is con-
siderably smaller than in the bulk material for the same
interparticle distance. The absolute values for the scaled
theoretical and experimental band-gap shifts agree quan-
titatively for both dimensions.

In order to get a better understanding of the results of
Fig. 3 we discuss the asymptotic behavior of the band-
gap renormalization by calculating the self-energies in
the Debye limit analytically. In this classical low-density
limit band-filling effects are neglected, so that ~F'g is
simply the self-energy of a point charge in the plasma:
AFc=g&(V I,

—Vk) =V, (r) —V(r) for r~ 0, where V,
is the statically screened Coulomb potential. The band
gap shrinks because the Coulomb potential is weakened
by the screening in the plasma. In 2D where Vk =2~e~/
eok and V,k = Vk [0/(k+k, qD) l, one has to introduce a
cutoff k, =kTen/e for the closest approach of the two
thermal electrons or holes, which takes into account the
short-range correlations. In the Debye limit the 2D
band-gap shift is thus given by
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suiting scaled 3D and 2D gap shifts are

+Fg2D E02D= —4
E02p k T

AEg3D 3E03D

E03D kT

&/2

—3/2r, (9)

In the Debye limit r, »1 the scaled 2D band-gap shift is
dominated by the factor r, . Therefore it is smaller
than the corresponding 3D result which indicates the re-
duced efficiency of screening. At higher densities and
lower temperatures not only screening but also band fil-
ling becomes important, especially in 2D, where the
screening wave number no longer increases with density
because of the constant density of states in one sub-
band. The numerical calculations which contain these
effects (see Fig. 3) show that the asymptotic inequality

~ AF&zD/EpzD ~
(

~ AE&3D/Ep3D ~
remains valid also for

shorter interparticle distances.
In summary, we have presented measurements and

calculations for the density dependence of the band-gap
renorrnalization in 2D EHP in GaAs-GaA1As structures
and compared them with corresponding 3D data. The
absolute values of the band-gap shifts in two dimensions
are found to be much larger than the corresponding
three-dimensional ones for equivalent EHP densities.
However, in appropriate Rydberg units the band-gap
shift in the 2D EHP is considerably weaker than in the
3D case, as a result of the reduced efficiency of screen-
ing in two dimensions. Our results imply that the
universal law found previously for the band-gap renor-
malization in 3D systems breaks down if the dimen-
sionality is changed. It would be interesting to study
other 2D semiconductors with different band structures
in order to test whether there is a new general law of the
band-gap renormalization in 2D systems.
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