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Resistance Noise in Nonlinear Resistor Networks
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Cohn s theorem is extended to the case of circuit elements with the nonlinear I-V characteristic
V rI'. This simplifies the study of resistance noise in nonlinear resistor networks. Exact exponent ine-
qualities are derived. Fractal and percolating structures are considered. The infinite number of ex-
ponents necessary to characterize completely the electrical properties of linear and nonlinear percolating
networks are calculated within the Migdal-Kadanoff approximation.

PACS numbers: 72.70.+m, 05.40.+j, 72.90.+y

Resistance noise manifests itself as voltage fluctua-
tions when a resistor is subjected to constant current
bias, or as current fluctuations in constant voltage bias.
The spectrum of resistance fluctuations has, in many ex-
perimental cases of interest, a low-frequency power spec-
trum which varies inversely with frequency. This is the
so-called 1/f noise. While the general origin of 1/f noise
is not well understood, it is relatively well established
that 1/f noise arises from resistance fluctuations. '

It has recently been realized that even when the mi-
croscopic origin of the resistance fluctuations is un-
known, it is useful to consider the problem of the magni-
tude of resistance noise in disordered media. Indeed,
in such cases, one can consider the problem of finding
the overall noise of the structure given the noise of the
smallest elements. It was found that the magnitude of
resistance noise depends on geometrical properties of the
structure which are quite different from those which
determine either the resistance or any of the previously
defined exponents for percolation. This result is of con-
siderable interest from both the experimental and
theoretical points of view. In the latter case, a whole
hierarchy of exponents can be defined which includes
many of the known exponents describing fractals. Such
families of exponents also arose in turbulence, dynami-
cal systems, and diffusion-limited aggregates. They
are thus a general feature of fractal systems.

Another recent focus of attention has then been the
problem of nonlinear resistor networks. Kenkel and
Straley ' have considered a class of nonlinear elements
which obey the current-voltage relation

V =r
~
I

~ 'sgn (I).

They have shown that this I-V characteristic is particu-
larly interesting because it corresponds to physically
realizable cases and also because (i) the I-V characteris-

gb tbVb g lpVp~ (2)

where the prime and double prime refer to two circuits
having the same topology, but not necessarily the same
conducting elements on their bonds b or external
measuring or biasing ports p. vb' refers to voltage drops

tic of an arbitrary network of such elements is also de-
scribed by the same power law and (ii) close to the per-
colation threshold p„ the I-V characteristic of any non-
linear network composed of monotonically increasing I-V
characteristics renormalizes to such a power-law form.

In this Letter, we are interested in the problem of
resistance noise in nonlinear resistance networks of the
type described by Eq. (1). This problem already arose
experimentally in the context of charge-density-wave sys-
tems" and of noise in metal-insulator mixtures. ' It has
recently been studied theoretically by Blumenfeld and
Aharony. ' Some hierarchical networks made of non-
linear elements have been considered by Arcangelis,
Coniglio, and Redner, ' who have argued that because of
the symmetry of the lattices, the resistance exponents for
various values of a are related to exponents for a=1.
Harris' has confirmed that this conjecture is valid only
to first order in the nonlinearity, a —1, for percolating
systems in d &6.

We first present a generalization of Tellegen's and
Cohn's theorems to nonlinear networks whose elements
obey Eq. (1) and derive exact inequalities between ex-
ponents which are analogous to those obtained for the
linear circuits. Finally, the Migdal-Kadanoff (MK)
position-space renormalization group allows us to obtain
the infinite hierarchy of exponents for both linear and
nonlinear percolating networks.

Tellegen's theorem is a consequence only of Kirch-
hoff's voltage and current laws and hence applies to arbi-
trary nonlinear networks. It can be written in the form
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across the bonds, and vz' refers to voltage drops at the
ports but with the opposite sign convention. The proof
follows exactly the lines of the linear case. '

Cohn's theorem' is the one which is particularly use-
ful for network sensitivity analysis' and hence for the
noise problem. First note that one can take arbitrary
linear combinations of Eq. (2) for different realizations
of the prime circuit as defined below Eq. (2). Denoting
this linear combination as gb(A'ib)vb'=g~(A'i~)v~, one
can then apply a similar operation for the double-prime
circuits to obtain the general result

gb(A'ib)(A "vb) =g (A'ip)(A "v~). (3)

We are interested in the case where the rb are fluc-
tuating in time. Assume that the network is polarized by
a constant current I at one port and that we are measur-
ing the fluctuating voltage V induced by the fluctuations
of the overall resistance R of the network measured at
that port. Let A' be the identity operator I, i.e., A'ib

represents the current in bond b when all the elements
have their time-average value rb. Then let A" be the
small-increment 8' operator, i.e., A"vb is the difference
between the voltage drops in this same circuit for two
different realizations of the fluctuations. We restrict
ourselves to the case a )0, where there is a uniqueness
proof' for the solution of Kirchhoff's equations. Con-
sider first the case where the expansion A "Ub = 8vb
= b'rb lg+ (avb/aib )hi b is valid. [For short, we have
dropped the sgn(i) of Eq. (1).] Equation (3) then be-
comes

IhV=hRI'+' =gbibhvb (4)

bR =gb brl, (ib/I ) (6)

allowing one to compute the overall resistance fluctua-
tions from the instantaneous values of the fluctuating
resistances and the steady-state currents. In a general
random-resistor network, one must allow for the fact
that some of the bonds will in general carry currents so
small that ib & Bib. In this case, the expansion of
bvb —hrbig in powers of hib/ib fails (unless a= 1). Ex-
panding in powers of ib/bib instead, one obtains

b vb
—

br bi g —rb [leg + ai b (hi b ) —i gl —rb bi g

The contribution of these bonds to the sum in Eq. (4) is
thus of order ibbig (b'ig+'. As long as the resistance

brl, l'g+ '+ g, l, (avb/alb) bib (5).
The last sum vanishes because ib(8vb/Bib)bib =abibvb
and gb hibvb =bIV=O, the last equality following from
Eq. (3) with A'=b, A"=I, and BI=0. Note that the last
term in Eq. (5) can vanish by these arguments only when

(avb/aib)ib =Cvb, where C is a constant. This is satis-
fied only for the special nonlinear I-V characteristic of
interest here, so that it is only for these types of non-
linear networks that one recovers a Cohn theorem,

(BRhR) p2 Zn i~

R R r (g ig+') (8)

Note that the voltage noise itself would scale as I, in-
stead of I as in the linear case. For a homogeneous Eu-
clidean lattice of size L, Eq. (8) predicts that Slt =(p /
r )/Ld. From Eq. (8), one can easily derive the compo-
sition rules for the relative noise of series and parallel
resistors.

As in Refs. 2 and 5, we can, for self-similar structures,
define the following infinite hierarchy of exponents x„:

g, (lb/I) """=L (9)

For a nonlinear circuit with a given a, the exponents x„,
for n integer, are measurable through the appropriate
higher-order cumulants of the resistance fluctuations
[see Eq. (6)j. Following the steps of Rammal, Tannous,
and Tremblay and Loeve, ' we note that xn —x„(a) is a
decreasing convex function of n, satisfying, in particular,
the inequalities

x„—l(a) (x„(a)( x„—l(a) — xp. (10)n 1

n —1 n —1

The last of these two inequalities is valid only for n ~ 1.
The above formalism allows us to calculate the ex-

ponents x„(a) for general networks once the current dis-
tribution is known. Note also that from Eq. (9) one
finds that the relation

x„(a)=x„il((a+ 1 —P)/P)

is valid for structures whose currents, in any branch of
the circuit, are independent of the I-V characteristic. An
example of such a structure is that of Refs. 5 and 14. A
special case of Eq. (11)was obtained in Ref. 14.

Let us discuss the case of percolating networks close to
the threshold p, . Let Slt =L and R =L ~" be the
finite-size expressions for S~ and R, respectively, which
hold when the system size L is much less than the corre-

fluctuations are small enough that the Bib are linear in
the various Br, then the contribution from the bonds with

ib ( bib is of order big+' —hr'+' and is thus negligible to
leading order in Brb (a) 0). Equation (6) thus follows
under rather general conditions. ' It is also valid if 6'R is
measured from the current fluctuations under constant
voltage bias. Note that the total resistance itself obeys

R =gb rb(ib/I) '+',

which follows immediately from power conservation.
From Eq. (6) one can immediately derive a series of

exact results using the same procedure as in Ref. 2. In
particular, consider a model where each of the conduct-
ing elements of the nonlinear resistors forming the cir-
cuit has the same average value and is fluctuating in-
dependently with a correlation (brbbrb) =p, whose fre-
quency dependence need not be specified. The relative
noise Sll can then be calculated from
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lation length g= (p —p, ) ". Then as in Refs. 2 and 3,
we have the inequalities g(a) ~ b(a) ~ dtt where (= (/v
and dtt is the fractal dimension of the conducting back-
bone. From the nodes-links picture, the upper bound
may be improved 0 as follows: b(a) ~ 2$(a) —1/v. As
usual, the exponent x defined by S~ = (p —p, ) "may
be obtained from scaling, x(a) =v[d b(a—)], and obeys
inequalities which follow from those for b(a). Above the
upper critical dimension d=6, the percolating clusters
have the structure of random chains so that —x„(a)=2
for all values of n and a. In particular, g(a)
=b(a) =dtt = I/v=x(a) =2. The conductivity ex-
ponent t, on the other hand, obeys, ' for d (6,

at/v =g(a) + a(d —1) —1, (i2)

so that using the d =6 value of the right-hand side, one
obtains t/v 5+a ' for d )6, in agreement with the
Cayley-tree results. '

Finally, we show that the Midgal-Kadanoff (MK)
position-space renormalization group may be generalized
to compute arbitrary exponents of the hierarchy for
linear or nonlinear networks. Consider first the resis-
tance of nonlinear networks. We follow closely the steps
of Kirkpatrick, ' except that we renormalize the resis-
tance instead of the conductivity because for a =1 this
gives an exponent closer to the Monte Carlo value and
because this approach can easily be generalized to arbi-
trary moments of the current distribution. The average
resistance of blocks measuring s lattice spacings in each
of the d directions is calculated by first averaging the
resistance of s ' bonds occupied with probability p
(bond moving) and then computing the average resis-
tance of s bonds in series. The corresponding scaling for
a homogeneous medium, s' 't '), must be divided out.
Let $ =1+@be the length rescaling, with g«1. The re-
normalization transformation is obtained from

(r)f(a, a), where a =p, /(I —p, ) ~ 1 and

f(a,a) = ln(1 —p, )' +i — '
. (is)

pe k i k(k+1)

l.75—
0

C:

l.5 0
I

Substituting the values of L~ and Lz in the first order in
ti expansion of Eq. (13), and recalling ' that (r)= (p —p, ) ", one obtains the exponent at(a)/v

a(d —1)+(d —1)f(a,a). From Eq. (12) one can
then calculate g(a) = —x~(a). The result is plotted in
Fig. 1. Since, within the MK approximation, the current
in each branch is independent of the I-V characteristic,
Eq. (11) holds. Alternatively, one can define MK trans-
formations directly for the various moments of the
current distribution and see that Eq. (11) is satisfied.
This means that with a trivial relabeling of the axes, the
same curve describes the whole hierarchy of exponents,
including, in particular, the noise exponent, for arbitrary
values of a. We have labeled the upper horizontal axis
with the value of n corresponding to —x„(1). It is clear
from Fig. I, then, that not only do the MK results have
the correct convexity, they also have the correct overall
shape as compared with Monte Carlo data. As expected,
though, the results are better in d 2 than in d =3. One
can also verify analytically that the asymptotic re-
sult s' —x (1)= —x~(~) 1/v is reproduced by the
MK approximation, with the MK value of I/v. Note,

R'((r)) =~ -~+~(~-»[R (R )~-~]((r))

where R~ combines $ resistors in series, and Rp averages
$ resistors in parallel. Recall the composition rules for
the series, R =g; r;, and parallel case, R =(g; r; 't')
R~ yields for (r) the average resistance (r') =s(r) and
hence in the linear approximation, R t ((r) ) = (I+ rt
x L~)(r& = (1+ti)(r&. The transformation Rz = I+ tIL&,
on the other hand, is obtained by use of the composition
rule r/n' for n parallel resistors,

o l.2 5—
I

l.OO-
OO

I

0.7 5—
Q

0.5 0
-2

I

0
I

2
Q

s $1(r') = g n
' p"(1 —p)' "(r).

1 —(1 —p)' n!(s —n)!

(i4)

The sum can be performed by first writing
n ' f y' 'e "~dy/I (a), where I is Euler's gamma
function. Once the sum is performed, the result can be
expanded to first order in tl, leading to L~ ((r) )

FIG. 1. Resistance exponent g(a) - —x~(a) from the MK
approximation: Solid line for d 2, and dashed line for d 3.
From Eq. (11), these results apply, within MK, for arbitrary
moments and nonlinearities a) 0. (See also Ref. 21.) In par-
ticular, —x&(a) —x„(1) with n (a+1)/2. Hence, by use
of the upper horizontal axis, the results can be compared to the
d 2 Monte Carlo data adapted from Table I in Ref. 23
(crosses) aud from Ref. 24 (circles). Stars are from Monte
Carlo results in d 23 (see Ref. 20 for bibliography).
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however, that while Eq. (11) trivially holds for d & 6, it
is not expected to hold for d &6, since in d=2, for ex-
ample, —xt(0) = 1.44, obtained from the spreading di-
mension, ' differs from —xtt2(1) =1.2, which can be
read from the Monte Carlo data of Fig. 1.

We are indebted to P. Breton for the Monte Carlo
data of Fig. 1 and to S. Redner for a preprint.
A. -M.S.T. would like to thank the Natural Sciences and
Engineering Research Council for support and the
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Research Council for a travel grant. He also acknowl-
edges the hospitality of the Centre de Recherche sur les
Tres Basses Temperatures in Grenoble.

Note added. —Since this work was submitted for pub-
lication two papers on closely related subjects have ap-
peared 2
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