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Ground-State Properties of the Periodic Anderson Model
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The ground-state energy, hybridization matrix element, local moment, and spin-density correlations of
a one-dimensional, finite-chain, periodic, symmetric Anderson model are obtained by numerical simula-
tions and compared with perturbation theory and strong-coupling results. We find that the local f
electron spins are compensated by correlation with other f-electrons as well as band electrons leading to
a nonmagnetic ground state.
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We have studied the ground-state properties of a one-
dimensional, symmetric, periodic Anderson model using
stochastic Monte Carlo techniques. Traditionally, the
numerical study of the ground-state properties of finite
quantum-spin chains has provided physical insight into
the properties of many-body systems. In addition, such
results provided a testing ground for approximate tech-
niques such as the Gutzwiller variational approach
and large-orbital-degeneracy N ' expansions. Usu-
ally, these solutions have been obtained by the exact di-
agonalization of the Hamiltonian with Lanczos-type pro-
cedures. In this spirit, Jullian and Martin have used a
Lanczos diagonalization to study periodic-Anderson-
model chains. However, the two-orbital periodic Ander-
son model has sixteen states per site so that the complex-
ity of the problem restricted their work to the exact diag-
onalization of two- and four-site chains. Here, using
Monte Carlo techniques, ' we present results for the
ground-state properties of chains which are sufficiently
large (sixteen sites) that the bulk limit is sensibly ap-
proximated. We analyze these results to determine the
effects of the Coulomb interaction on the ground-state
energy, hybridization matrix element, f-site local mo-
ment, and magnetic correlations. We find that the
ground state exhibits short-range magnetic correlations
and that the local f-electron spin moments are compen-
sated by correlations with other f-electrons as well as
band electrons leading to a nonmagnetic ground state.

The Hamiltonian for the one-dimensional periodic An-
derson model can be written as

H=g[ —t(CF+h~Chv+ChvCh+t ) V(Chvfh +fh Chv)
Icr

+ efn/ + 2 Unjnf ]

Here Cht and fP create Wannier electrons in C and f-
like orbitals on site / with spin cr, and nj =fht fh The C.
orbitals overlap via the hopping term t to form a band.
The local f orbitals with site energy ef are hybridized
through V with the C orbitals. Two electrons in the same

f orbital experience a Coulomb repulsion U. In the fol-
lowing we treat the particle-hole symmetric case in

which ef = —U/2.
We have used both a modified projector method, in

which the operator e ~ is applied to project out the
ground state, and a finite-temperature Monte Carlo
technique with an exact updating procedure. ' The pro-
jector technique allowed us to achieve large P values

(P—10 ) to check that the ground-state properties were
being obtained. The finite-temperature technique al-
lowed us to see the approach to low temperature, and
further results obtained from it will be reported else-
where. "' Here we discuss the ground-state properties.

In the absence of the Coulomb interaction U, Eq. (1)
describes a simple two-band system with band energies

E; =e,/2+- [(e,/2)'+ V'] '" (2)

Here ep = —cos(k) for t =0.5. These bands are separat-
ed by a gap of 2d, with 24=(1+4Vz)'h —l. In the
noninteracting ground state the lower band Ek is entire-
ly filled with spin-up and spin-down electrons giving a
ground-state energy per site of

Ep(0) =(2/N) gk Ek

and the system is in a singlet state with (hM, ) =0, where
M, is the total z component of spin. As the Coulomb in-
teraction U is turned on, we expect the system to remain
in a singlet state unless a phase transition were to occur
at some critical value of U. Our numerical results give
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no evidence for such a transition. Carrying out perturbation theory' to order U one finds that the ground-state ener-

gy per site is

(4)

with

u = —'[I+c /(c +4V )' ] v = —,
' [I —c /(c +4V )'

Here the expansion parameter is U/h. In the strong-
coupling limit where U/b, is large, one has through
O(U-'),

U+ 2 2V' I f(ck—)
Eo(U) = —+ gckf(ck)—

k

(6)

with f(ck), the zero-temperature Fermi factor, equal to
1 for ek & 0, 0.5 for ek =0, and 0 for ~k & 0.

Simulations were carried out for a variety of parame-
ters, with fixed t =0.5. The ground-state energy per site
is a smooth function of the number of sites N and for
N =16 the systematic change with size is inside our sta-
tistical error. The values of Eo(U)/ i Eo(0) i, for V
=0.375, corresponding to 6 =0.25, are plotted versus U
in Fig. 1. The dashed line is the second-order per-
turbtion-theory result, Eq. (4), and the solid line is the
strong-coupling expression, Eq. (6). The rms errors are
of the order of the size of the points.

In the presence of U, the effective hybridization is re-
duced as a result of the Coulomb correlations. A useful
measure of this reduction is given by the ratio of
fr+I +diJ'I in the interacting ground state to its value

(5)

when U=O,

&ftQ +d iQ )/(fiQ +d tJ" &o

This matrix element can be directly obtained from Ep by
use of the Feynman-Hellman relation

(fr+I +diJi &
= —,

' r)Eo/8V.

The dashed line in Fig. 2 was obtained by differentiation
of the perterbation-theory expression for Eo, Eq. (4),
with respect to V, while the solid line corresponds to the
strong-coupling result

&fiAI +dr@"i &= ~ g U 2+
2V I f(ck)

obtained from Eq. (6). The points were calculated from
the simulation. One clearly sees the decrease in the ef-
fective hybridization as U increases. Since the gap varies
as the square of the hybridization matrix element, it has
decreased by a factor of 10 for U of order 3. For the
symmetric Anderson model (nf) remains fixed at 0.5,
and thus in the particle-hole-symmetric case the renor-
malization of the hybridization does not arise from a
change in (nf).

In addition to altering the hybridization, the suppres-
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FIG. 1. The ground-state energy Eo(U)/! Eo(0)! vs U.
Here t 0.5, V 0.375, and 6 0.25. The dashed curve corre-
sponds to the second-order perturbation-theory result, Eq. (4),
and the solid line is the strong-coupling approximation, Eq.
(6).

FIG. 2. The hybridization matrix element (f/' +H.c.)
normalized to its U 0 value vs U for the same parameters as
in Fig. 1. The dashed curve is the second-order perturbation-
theory result, and the solid line is the strong-coupling limit.
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and for strong coupling we have from Eq. (6)

(mf(1)') =i-
„(U/2+~k) ' (i3)

These are plotted as the dashed and solid curves, respec-
tively, in Fig. 3, which shows (mf(l) ) vs U. The points
were obtained from the simulation.

These results clearly show that U reduces the hybrid-
ization and produces local moments on the f orbitals. In
addition, it leads to interactions between these moments
and the d electrons. In order to explore this feature we
have calculated various magnetic and charge-density
correlation functions. The charge-density correlations
show the suppression produced by U. The magnetic
correlation functions (mf(l)mf(0)) and (m, (l)mf(0))
with md(l) =nit —

nil and mf(l) =nil —
n&&, respectively,

sion of charge fluctuations by the Coulomb interaction
leads to the formation of local moments on the f orbitals.
A measure of this is the average of the sIIuare of the f-
orbital single-site magnetization mf(l) =nil —

nit,

(m f(l ) ') =1 —2(nI tn~&). (io)

For U =0, (n&~n&&)
= —,

' and (mf(l) ) is equal to 0.5. For
large U, double occupancy is reduced by the Coulomb
repulsion and (m, (l) ) approaches 1. Again the deriva-
tive of the ground state with respect to U provides a con-
venient way of evaluating this. With ef = —U/2,

& f(l)')= —2aE,/aU.

For weak coupling, Eq. (4) gives

v2u2
f(l)z) 0 + 4U ~ p p+v 8+q
Z +N pkq Ek+q+Ep —Ek —Ep+q

(i2)

were found to exhibit short-range correlations which act
to screen the f-orbital moment. This is clearly seen in

Fig. 4, where they are plotted for the first few spacings
for U/6 =2.0.

To see how the magnetic correlations act to screen the
f-site moments leading to a singlet ground state, we con-
sider the total z component of magnetization

N —1 N —1

M, =mf(0)+ g mf(l)+ g md(l).
I 1 I 0

(i4)

Using the correlation functions shown in Fig. 4 to evalu-
ate the left-hand side of Eq. (15) gives 0.65 ~ 0.02, while
((mf(0)) ) =0.64~0.02. Thus, just as in the single-
magnetic-impurity case, the f moment is compensated
by correlations in the surrounding medium. ' However,
as discussed by Nozieres, ' in the periodic Anderson
model this compensation does not arise from just the d-
band electrons. Rather, as one sees in Fig. 4, an impor-
tant part arises from the f—fmagnetic correlations.

In conclusion, simulations of the symmetric, 1D,
periodic Anderson model show that the Coulomb in-
teraction leads to a reduction in the f dhybridiza-tion,
local moment formation on the f-orbitals, and short-
range magnetic moment correlations, resulting in a sing-
let ground state. The ground-state energy as well as the
hybridization matrix element (f/' +de'I ) and the
mean square local f moment (mf(l) ) smoothly cross

If the ground-state expectation value of M, vanishes,
then squaring Eq. (14) and taking its ground-state ex-
pectation value leads to a compensation sum rule

N —
1

(m~z(0) ') = —g (mf(l)m~f(0)) —g &m,"(l)mf(0))
0
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FIG. 3. The square of the f-orbital single-site magnetization
((mlf) 2) vs U for the same parameters as in Fig. l.

FIG. 4. The (mf(l)mI(0)) and (md(l)mf(0)) magnetic
correlation functions vs site separation 1 for Ujh 2.0.
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over from the weak-coupling to the strong-coupling limit.
Similar results were found for a variety of parameter
values leading us to the conclusion that this type of be-
havior is a general property of the 1D, symmetric,
periodic Anderson model.
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