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Evidence is presented that many-body interactions in fluids have important consequences at the
liquid-vapor critical point. In particular, three-body interactions in lattice-gas models are shown to lead
to revised scaling variables and to a singularity in the coexistence-curve diameter with an amplitude pro-
portional to the molecular polarizability. This is confirmed in experiments reported here. A companion
van der Waals theory explains several other observed correlations between nonuniversal critical ampli-
tudes.

PACS numbers: 64.60.Fr, 05.70.3k, 61.20.Ne, 64.70.Fx

Experimental and theoretical results are reported here
which indicate that the pair-potential model of fluids is
insufficient in the critical region. From an analysis of
lattice models, we show that the scaling variables which
describe the critical behavior become "revised"' in the
presence of triplet interactions: The thermal scaling
field acquires a dependence on the bare chemical poten-
tial p, and this field mixing leads to a singularity in the
coexistence-curve diameter pd —= (pi+ p„)/2p„with pt p„„
and p„respectively, the coexisting liquid and vapor den-
sities, and the critical density. With t =(T, —T)/T, the
reduced temperature, then as t 0 the diameter varies
as

pd =1+4),t ' '+.4)t+
where the exponent a(=0.11) is that of the specific
heat at p=p, . The linear term is a background contri-
bution universally observed in all fluids.

The century-old law of the rectilinear diameter as-
serts that pd is instead an analytic function of tempera-
ture, with At, =0. The nonanalyticity in (1) has been
predicted by a variety of continuum and lattice mod-
els, ' and by renormalization-group calculations. Yet,
its experimental verification in insulating fluids has prov-
en exceedingly difficult, leaving unresolved the funda-
mental issue of the relation between the scaling fields at
the liquid-vapor critical point and the reduced tempera-
ture and external field at the Curie point of the Ising
model (lattice gas), for which A t -,=0 by the symmetry
of the Hamiltonian.

In metals such as cesium and rubidium, it is suggest-
ed that many-body effects related to electronic screen-
ing lead to the remarkably large-amplitude singularities

found recently. Here, we relate the amplitudes of field
mixing in insulating fluids directly to the molecular po-
larizabili ty, and experimental results reported below
lend strong support to the analysis. Systematic trends in

other nonunlversal' critical amplitudes are also reported,
and can be directly attributed to three-body forces.

The most important of the many-body interactions in

fluids is the Axilrod-Teller interaction coupling triplets
of particles. With 0; the interior angles and r;~ the leg
lengths of the triangle formed by a trio, this potential is

VAT = —„lazf ((8;I )/rt2rt3r23, where az is the molecular
polarizability, I the ionization energy, and f a function
of angles which makes VAT primarily repulsive. In com-
parison, the attractive part of the dominant two-body in-
teraction is Vz(r) = —

—,
' Iaz/r . With p, proportional to

the typical value of 1/r;~ in the critical region, a dimen-
sionless measure of the relative importance of VAT and
V2 is the critical polarizability product e~p, . Since the
critical temperature scales with V2, it follows that
a~p, —T,': Triplet interactions are relatively more im-
portant in highly polarizable fluids with corresponding
ly higher critical temperatures.

Figure 1 shows the diameters of Ne, N2, C2H6, and
SF6. The data on Ne and N2 were obtained by dielectric
constant measurements, described previously, ' and for
ethane ' ' and ethylene ' (not shown, but similar to
ethane) from measurements of the index of refraction in

the two phases. The diameter of SF6, one of the few ex-
amples until now to exhibit an anomaly, is from dielec-
tric measurements of Weiner, Langley, and Ford. ' A
full description of the new data and its analysis is given
elsewhere. '

Two trends in the data are immediately clear: First,
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FIG. 1. Coexistence-curve diameters vs reduced tempera-
ture, with linear fits (dashed lines) determined at large t.

FIG. 2. Deviations of diameters from the linear fits. Inset:
Deviations normalized by the critical polarizability product
a&p, .

as has been noted before, ' the slope of the diameter far
from T, systematically increases with the critical tem-
perature of the fluid [T, =44.48 (Ne), 126.21 (N2),
282.38 (C2H4), 305.27 (C2H6), and 318.71 K (SF6)].
(The dashed lines in the figure are least-squares fits of
the data to a functional form of pd =A 0+ A ~ t over the
temperature range 8 x 10 & r & 2 x 10 . ) Second, the
deviations from the linear behavior which appear at
smaller t also increase in the same order. For Ne, Nq,
and SF6, those deviations are shown for clarity in Fig. 2.
Detailed analysis' shows that all of the diameters are
consistent with the functional form implied by Eq. (1).
The inset shows the deviations normalized by asap„and
from the near common collapse of the data, it is clear
that the magnitudes of the anomalies are essentially pro-
portional to

asap,

.
The five fluids also exhibit a linear variation of the di-

ameter slope A~, determined at large t, and of the criti-
cal compressibility factor Z, —=P, /p, kaT, with asap, [Fig.
3(a)]. Combining the present data with those of other
fluids we see [Fig. 3(b)], that there exists a monotonic
relationship between A~ and A~, the amplitude of the
order-parameter variation; (pi —

p„, )/2p, —Apt~ The.
offset of older data (solid dots) from the present results
(open circles) is due to different apparent values of p
and different temperature ranges studied in the analysis.

To account for the data in Fig. 3, consider the van der

Waals free energy of a fluid of N particles interacting
with a pair potential V2 and a triplet potential V3,.

NAF =NkBT ln
e(V —Nb)

N—aN —+qN—
V V

(2)
with A the thermal wavelength and b the excluded
volume. Here, a = —

—,
' fdrVq(r), q

= —,
' ffdrdr'V3(r,

r', r —r'), the integrals being over the regions of the po-
tentials outside a hard core. For weak V3, a Maxwell
construction yields amplitudes A~ =2+ —', x +. . . (with

P=2), A)= —, + —„x+.. . , and Z, = —,
—sx+. . . ,

2 22 3 I

where x =q/ab is proportional to asap, . We thus find the
parameter-independent relation A&= —', , + —,', A~, shown

as the dashed line in Fig. 3(b), whose slope is in excel-
lent agreement with . the data. That the mean-field
values of A~ are larger than those from experiment is
again due to the nonclassical value of p(= —,

' ) in real
fluids. Further evidence for the presence of three-body
interactions comes from the ratio of slopes of the two
curves shown in Fig. 3(a), which theory predicts is

&~ (asap, )/Z, '(asap, ) = —',
~

= —11.7. The experimen-
tal value of —8.7 ~0.5 is in good agreement in magni-
tude and in sign.

Turning now to the deviations from ana1yticity shown
in Figs. 1 and 2, we note that if a fluid with triplet in-
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FIG. 3. (a) Diameter slope A1 and compressibility factor Z, vs critical polarizability product for Ne, N2, C2H6, CzH4, and SF6
(left to right), along with linear fits (dashed lines). (b) Order-parameter amplitude A& vs diameter slope A1 for (solid dots, left to
right) He, He, H2, Ar, Oq, Xe, N20, COz, NH3, and H20, from Ref. 5. Open circles (left to right) are Ne, N2, C2H6, C2H4, and
SF6.

teractions is in the same universality class as one
without, then they share a common scaling function for
the singular part of the free energy in the critical region,
and an analytic map must exist which relates the scaling
fields of the two systems. We have constructed such
maps' for two- and three-dimensional lattice gases with
weak triplet interactions, ' and report here the result for
the simplest system, the honeycomb lattice gas.

Consider a honeycomb lattice site labeled "1"and its
three nearest neighbors, 2, 8, and C, with a nearest-
neighbor interaction K, and three-spin interactions L,

coupling sequential triplets (e.g. , 1MB) and M coupling
equilateral trios (e.g. , ABC). For L and M small, and
with a total number of sites (volume) N, the grand free
energy per particle to = 0,/N can be related to that with
L and M zero (the "reference system") by first-order
thermodynamic perturbation theory;

to(z, K,L,M) =top(z, K)+, g 'Lpp (1,A,B)+, g "Mpp (A,B,C)+. . . ,
(3) 1

(3)
1,3,8 ' A, B,C

where cop(z, K) =to(z, K,L =O,M =0), the pp( )(ijk) are the reference-system three-body distribution functions,
z =exp(Pp) is the fugacity, p being the chemical potential, and the primes restrict the sums to triads of the appropriate
geometry. The Kirkwood-Salsburg' identities allow us to express these particular pp s in terms of the density p

' (1)
and the correlation function p (1,A );

(3) (1 ~ B ) g (1AB) + g (IAB) (1)(1) + g(IAB) (2) (1 ~ ) (4)

and similarly for pp (A,B,C). At the critical point, the S s are simple analytic functions of z and K. Given (4), Eq.
(3) can be compared with the leading-order term in an expansion of (op under small shifts in the fugacity and nearest-
neighbor coupling, i.e,

top(z+&z, K+6K) = top(z, K) —kIIT pp' (1)+ 2 AKp(I (I,A).
z

We thus identify hz and AK in terms of the expansion coefficients So', and obtain the desired map in a form identi-
cal to the continuum and lattice models, namely, to(z, K,L,M)=top(z', K')+rob(z, K,L,M), where K'=K+6K,
and z

' =z +Az, and rob is an anal tic background contribution.
The thermodynamic density, p ')(z,K,L,M ) = —(z/kBT)(6to/Bz ), is therefore

I I

eT a, a ' 2kTaz (s)

With minor modifications, this form of p
' holds in other two- and three-dimensional models. ' From the exact solu-

tion of the honeycomb Ising model, it is known' that on the coexistence curve, the even-parity part of po has a criti-
cal anomaly like that of the energy density, of the form t ' ' (tint in two dimensions, with a=0). The amplitude of
the anomaly is governed by the field-mixing derivative BK /Bz, which is given completely in terms of the expansion
coefficients in Eq. (4). The diameter singularity can be shown to scale with L/K (and hence like the polarizability in a
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fluid), and for a repulsive potential like that in insulating
fluids, to have a sign in agreement with that exhibited by
the data reported here.

To summarize, we suggest that there is now clear evi-
dence that many-body interactions have important
consequences in the critical region of fluids, in particu-
lar, introducing a revision of the scaling variables that
pertain in the simple lattice-gas model.
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