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We define the concept of multifractality for linear growth models. This is done on the ensemble of all
trajectories and it allows us to partition this set into equivalence classes characterized by singularity
strengths a and growth rates z(a). To extract information on the embedding properties of these subsets
in the physical lattice we define a mean-square-displacement exponent v(a). The formalism is illustrat-
ed for the indefinitely growing self-avoiding walk on the square lattice with a twenty-step exact
enumeration. For each of the quantities z(a) and v(a) we find a continuous spectrum of values.
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Through the years random walks have been studied in-
tensively in several fields, including transport processes
and polymer science. Recently it has been realized that
random walks also form an important and relatively easy
to study subclass of growth models. ' In the more ela-
borate cluster growth models like diffusion-limited aggre-
gation5 and the stochastic model for dielectric break-
down, which are known to form self-similar structures
characterized by a Hausdorff dimension, it has been very
recently shown that an additional continuum of scaling
exponents is needed in the description of the growth-
probability distribution on the interface. This so called
multifractal or multisingular nature of fractal measures
has, since the work of Halsey et al. , gained much in-
terest and has been studied in various physical systems,
such as turbulence, ' dynamical systems, " multiplica-
tive random processes, ' and localization. 's

Ever since their introduction, the main tool in the
characterization of linear aggregates grown with kinetic
random-walk models has been the mean square displace-
ment (r )„ofthe walker after n steps and the corre-
sponding exponent v in (r )„—n ". In this Letter we
show how to define the concept of multifractality for tru-
ly kinetic random walks (TKRW) like, e.g. , the
indefinitely growing self-avoiding walk (IGSAW). '4

From this we find that the usual exponent v is a member
of a continuous set of scaling exponents. The concepts
introduced here thus provide a much more complete
description of random walks than was possible previous-
ly.

The idea is to characterize each infinite-step TKRW
trajectory by a scaling exponent a, ' which measures
how fast its total probability decays to zero with increas-
ing step number. Because of their analogous role as in
Ref. 9 we refer to the a as singularity strengths. The set
of all infinite-step TKRW trajectories can then be parti-

tioned into equivalence classes consisting of trajectories
with the same singularity strength a. We then define the
growth rate z(a) of the number of walks in these subsets
and show how to extract the z(a) curve through a

Legendre transformation on an easily computable hierar-

chy of exponents d~. Although the z(a) and d~ are the
ana logs of the f(a) and Dq of Halsey et al. and

Hentschel and Procaccia, ' we want to stress that the ex-
act mapping between the two is not trivial. This be-
comes clear if one notes that the probability distribution
used in the construction of the equivalence classes is

necessarily defined on the ensemble of infinite-step
TKRW trajectories, ' whereas these subclasses for in-

stance can be defined for one single growth cluster. As

opposed to the Hausdorff dimension9 f(a) of these sub-

classes, the z(a) curve contains no information on the
embedding properties of the TKRW trajectories on the

physical lattice. To get this information we introduce an

effective mean-square-displacement exponent v(a).
The formalism will now be explained by our applying

it to the IGSAW on the square lattice. The IGSAW
random walker is allowed to vist with equal probability'
any empty nearest-neighbor site which does not lead into
a trap. From exact enumeration and Monte Carlo simu-
lations' it is known that the correlation-length exponent
is v 0.567. It has also been found' that the number I

„

of n-step trajectories scales like I „-z"n",where z and

y have the self-avoiding-walk' values 2.64 and 1.34.
Both z and v will be shown to be members of the con-
tinuous families of exponents z(a) and v(a).

Let us number the n-step IGSAW trajectories with in-

dices i =1, . . . , I„.The weight w„(i)of each n-step tra-
jectory is then given by the product of all its one-step
transition probabilities p; (j), i.e. , w„(i)=+1- tp; (j).
For the IGSAW these one-step transition probabilities
assume the values —,', —,', and 1, and because it is truly
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The quantity ( —,
' )" in the denominator is the weight of

the trajectory for a symmetric random walk (SRW) on
the square lattice. The reason for its appearance is that
the multifractality of the IGSAW is defined with respect
to its embedding in the set of all SRW trajectories. In
our definition (~ )" plays the role of the box size' in

Ref. 9. The a; allow the subdivision of the set X of all
infinite-step IGSAW trajectories into equivalence classes
X' of trajectories with the same value of a. For the
number I „'of n-step trajectories in X' we assume a scal-
ing behavior similar to that for the complete set X, i.e.,

I a n( ) r(a) —
1 (2)

Thus the growth rate z (a) equals lim„(I„'+~/I„').
The determination of the z(a) curve through Eqs. (1)

and (2) is cumbersome. To study this curve we define a
one-parameter family of exponents dq (q E R) which can
be more easily determined,

dq = lim [ —InZ„(q)/(q —1)ln4 "], (3)

where

kinetic it follows that g " &w„(j)=1, for all n .The
singularity strength a; of the ith trajectory is defined as

a; = lim [lnw„(i)/ln( —,
' )"].

a twenty-step enumeration. In analyzing the data we as-
sumed that the leading correction to the dominant scal-
ing behavior of E„(q)in Eq. (3) is of the form n ', i.e. ,

X„(q)—4 ' n '. To reduce odd-even oscillations
—nd (q —1)

typical for the square lattice we have extrapolated dq
from

z„+,(q) n+1
ln

( )
=dq ln4+ Aq ln

&n —
1 g

To determine the z (a) curve from the dq we first
rewrite Eq. (3) using Eqs. (1) and (2) as

r
Z„(q)=„dap(a) (4")', (6)

s —= —qa+ lnz (a)/ln4,

for large n, where we replaced the sum by an integral
and introduced p(a) to include prefactors. The power
lnz(a)/ln4 in the integrand of Eq. (6) can be interpreted
as a HausdorA' dimension, by noting that 4 " plays the
role of a box size' as already mentioned below Eq. (1)
for a(q =0). By performing a saddle-point approxima-
tion similar to the one in Ref. 9, one finds that
Z„(q)—(4")', where t—:—qa(q) + lnz (a(q) )/ln4 and
a(q) is the value of a maximizing the exponent
—aq+lnz(a)/ln4 in Eq. (6). From Eqs. (3) and (6)
one then finds that

X„(q)= g wq(i), q C R. (4) ( (q)) =4""'
a(q) =d [(q —1)dq]/dq.

(7a)

(7b)

lim [X„+)(q)/X„(q)]=4
ff~ OO

(5)

It thus follows that 4 ' is the conditional probabil-
ity for q identical n-step trajectories to proceed one step
in the same direction; per trajectory this probability is
therefore 4 '. In the limit q

—~ only those trajec-
tories having minimal probability dominate. For the
IGSAW these have w„=(—,

' )" and one thus finds, using
Eq. (3), that d — = ln3/ln4 =0.79. If in the limit

q ~ the perfectly spiraling trajectories give the dom-
inating contribution in Eq. (3), one finds d =ln2/ln4
=0.5. However, we cannot exclude the existence of tra-

jectories with larger probabilities. This would lead to a
smaller value for d . In general, 4 " and 4 ™are

—d —d-

the effective one-step transition probabilities for the tra-
jectories with respect to the highest and lowest weight.

For the actual calculation of the dq we have performed

These exponents are analogs of the generalized dimen-
sions Dq defined in Ref. 15.

From Eq. (3) it follows that do =lnz/ln4 =0.7. In
Ref. 19 it is shown that do is the Hausdorff' dimension of
the IGSAW as embedded in the space of SRW trajec-
tories. The value do=0.7 has to be compared with
do= 1 for the SRW itself. Now X„(q)is the probability
for q =2,3, . . . trajectories to coincide in the first n steps.
Equations (3) and (4) give

By interchanging the diA'erentiation and the limit
(n ~) in Eqs. (3) and (7b) one finds using Eq. (1)
that a(q) =lim„g;",W„(i,q)a;, where W„(i,q)
=wg(i)/g "

&
wq(j). From this it follows that a(0)

=g;"
&
a; I „and that a(1) =d(1) =lnz(a(1))/ln4.

Therefore, d~ is the HausdorH' dimension of X' ' . Be-
cause z(a) is smaller than the coordination number of
the lattice and larger than 1, we find from Eq. (7a) that
a(~ ~) =d~ . From Eqs. (7) one can calculate the
z(a) curve as shown in Fig. l. In doing the saddle-point
approximation it follows that (dz/da)/z(a)ln4 =q. So
the slope at a(q = ~ ~) should be infinite. The max-
imum should thus occur at z(a(0)) =4 '=z =2.64, adp

value that we indeed find numerically (see Fig. 1). For
large negative q the z(a) curve is almost asymptotic and
one approximately finds a( —~) =0.79 and z(a( —~))
=2.3. The former is in good agreement with the exact
value a( —~) =ln3/ln4, which follows from Eq. (1) and
the fact that only those trajectories with minimal weight,
i.e., 4 3 3 . , contribute. A lower bound can be de-
rived by noting that the replacement of each bond of an
arbitrary n-step trajectory by one twice its size trans-
forms it into an element of I ft . Thus we find that
z~"(a( —~))~ z"(a(q)) for all q. Because z(a(0))
=2.64 is the maximum one finds z(a( —~))~ 1.62.
For q ~ we expect a limiting behavior of
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FIG. 1. The z(a) vs a curve for the IGSAW. The points
correspond from right to left with q

—9.0 to 3 in steps of 0.1.
The maximum occurs at a(q 0).

7Q 7464 66 70

FIG. 2. The v(a) curve for the IGSAW. From right to left
the a values are a(q), q 0 to 1 in steps of 0.1. The IGSAW
mean-square-displacement exponent equals v(a(1) ).

D„(q)R„(q)= = g W„(i,q)r; —n "',
x„(q) (8)

where D„(q)=g, "
) r; wg(i) and r; is the end-to-end dis-

tance of the &th n-step trajectory. We will now show that
the scaling exponent vz in Eq. (8) is an effective mean-
square-displacement exponent for the subset X ~~ . Us-
ing Eq. (1) we find

ra

D„(q)=g (4 ")~ g A fr;2, (9)

where the A; are prefactors from Eq. (1). The usual
scaling Ansatz gives

r r ' —1

g Wfr2 g I n 2v(a)

a(q ~) =0.5, because now the dense trajectories will
be selected; however, see also the discussion given for
d . The corresponding z(a(~)) value is =1.7, but it
cannot be trusted, because as can be seen from Fig. 1 no
asymptotic behavior, indicated by an infinite slope,
occurs for positive q values. The origin of these
difficulties is obvious. For large ~q ~

and n values, w~~

becomes very large (or small) and one is thus restricted
to moderate q values. For large positive q values one has
the additional problem of the lattice oscillations because
only the denser IGSAW trajectories carry a substantial
weight. However, for not too large values of

~ q ~
we ex-

pect correct results, as indicated by the correctness of the

q =0 result. Also for q =1 we find numerically the
correct result a(1) =Inz(a(1))/In4.

Thus far we have studied z(a), a quantity which car-
ries no information about the embedding in the square
lattice. Traditionally one does not encounter this prob-
lem because the measures considered are defined on
physical spaces. To get this information we study the
following generalization of the mean square displace-
ment:

Proceeding in the same way as in Eq. (6) we arrive at

( ) da (a) 4n s+ 12v(a)/)n4]0nn)/n
q ~ QP Q

where s is as defined after Eq. (6). If we maximize the
exponent of the integrand we obtain, up to corrections of
order n 'inn, the same value of a(q) as in Eq. (7b).
Because both in the denominator and the numerator the
integrands have their maximum at the same value a(q)
we find that the R„(q)scales as n "(''r)). Note that in

doing this, the correction term n "(') ' in Eq. (2), when
included in both the numerator and the denominator of
Eq. (8), drops out. So in this way we have introduced a
correlation-length exponent v(a) for every subset X',
giving information about the extension in physical space
for every subset separately.

In order to determine the vv from the series R„(q)in

Eq. (8) we used the same method of analysis as in Ref.
14. From Eq. (8) it follows that v(a(1)) should have
the value 0.567. For q =0 all the trajectories have equal
weight, and therefore one expects to find the self-
avoiding-walk value —,'. In Fig. 2 we show the v(a)
curve for a=a(q), q =1,0.9, . . . , 0.1,0. We find the ex-
pected value of v at q=0 and q=l within an accuracy
of 1%. We therefore also expect the analysis to be reli-
able for 0 & q & 1. That the v(a) is a nondecreasing
function of Q can be qualitatively understood by noting
that the dense trajectories become more dominant for in-
creasing q. For q ~ one has v(a(~)) = —,', but we ex-
pect that this value will be reached already for a finite
positive q value. For negative q values one has 0.75
~ v(a( —~)) ~ 1; however, we believe that v(a(q)) is

equal to 0.75 for all q &0. But to resolve this problem
one needs better data.

We have shown how to define the multifractal concept
for linear aggregates. Contrary to the situation in

branching growth models the multifractal concept
developed in this paper is not a property of a single linear
aggregate (trajectory) but of the complete set of possible
trajectories. Although the z(a) curve proposed for the
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characterization of the multifractality can be realted to a
Hausdorff dimension, ' it does not contain information
of the embedding properties in the physical lattice of the
trajectories in the different subsets. To get this informa-
tion we have shown how to define an effective exponent
v(a) for these subsets. As an example we have applied
the formalism to a simple linear growth model, the
indefinetely growing self-avoiding walk. We expect that
these methods are useful for the understanding of other
random walks (e.g. , RW's in random media, ' Laplacian
random walks ) as well.
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