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Signature of g Boson in the Interacting-Boson Model from g-Factor Variations
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Using projection techniques, we show that stretching occurs in the sdg interacting-boson model (IBM)
but not in the sd model. As a result the sdg IBM allows g-factor variations in the ground-state band in
accordance with recent experiments, and as such may provide a signature for the g boson.

PACS numbers: 21.60.Fw, 21.10.Ky

There has been a long controversy on the role of the g
boson in the interacting-boson model (IBM). Micro-
scopically it was found that in the region of deformation
there are nonnegligible admixtures of J=4+ (G) pairs
in the low-lying collective states. Thus the mapping of
the fermion pairs to the boson states requires a certain
amount of g boson which is the image of the G pair. ' On
the other hand, phenomenological analyses of low-lying
collective states indicate that the sd IBM is quite suffi-
cient for the description of vast amounts of data. 2 The
need for the g boson arises only for high-spin states3 and
for relatively high-lying side bands. Given that for
low-lying states the predictions of the sd and sdg IBM's
are so similar, it becomes a matter of importance to find
a nuclear property that might distinguish the two mod-
els. The recent observation of g-factor variations in the
ground-state band may just provide such a property.

In the simplest case of the sd IBM with one-body M1
operator, g factors for all states are constant because the
Ml operator is proportional to the angular momentum
operator. Including higher-order terms in the M1 opera-
tor leads to some spin dependence in the g factors,
which, however, is too small to have any practical signifi-
cance. Likewise, the extension to the proton-neutron
IBM (IBM-2) does not lead to a large variation, because
the ground-state band is almost pure in F-spin symme-
try, and one gets essentially identical results for the two
versions. Thus the IBM with only s and d bosons is un-

able to explain the g-factor variations in the ground-state
band. In the following we will show that including the g
boson allows the boson system to stretch (i.e., amplitudes
of boson operators in the intrinsic state change with
spin), which introduces a spin dependence in the expec-
tation value of the M1 operator.

In order to demonstrate the technique in a simple case,
we will first carry out the calculation for the sd IBM.
For the boson Hamiltonian, we take the dominant quad-
rupole interaction

where the quadrupole operator Q contains another pa-
rameter E:

g„=(std+dts)„+Z(d td)„

Here, parentheses denote tensor coupling of operators
and d„=(—)"d-„. Introducing the intrinsic state for
the ground-state band
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and projecting to good angular momentum,

ILM& =Pro I ttt&,

Pity» = [(2L+ I )/8tr'] D~~(n)R(n)d n,

we evaluate the expectation value of H, Eq. (1), for a
given spin:
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where p denotes the Euler angle and d~ are the reduced rotation matrices. If we define the rotated intrinsic operator
as

b t=e ~«bte~&=xost+x2g d2 (P)dt

the matrix element in the denominator can be easily calculated as

( —
I b e "(bt)

I

—) =N!(Bb' /Bb ) =N![x$+x$djp(p)] =N![Z(p)]
A similar calculation for the numerator, utilizing the commutation relations

[b,g„]=bpox2s+ (xo+ (2p201 2p»x2)dp

[Q„,b ] =(—) "d „o(P)x2s +xodent+—Zx2+„.(2p+ p'2 —p'I 2p)d~g(P)dJ+„,
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gives

( —ib g g(b't)
i
—)=NN![Z(P)] 'g {Z(P)[5xp+(I+X )dpp(P)x22]8 o

+ (N 1 ) [b~oxox2+ (xpx2+(2@20 i 2p)Xx2 )dip(P)]

For the evaluation of the integrals, we use the Gaussian approximation, which is valid for large N,

[Z(P)] = (x x) exp( —P /I ),

where x =(xp,x2) and I =2x x/3Nx).
Extending the p integration to ~ and using the integral formula9

p OO

dP sinP PL (cosP)exp( —P /I ) = I /2 —I [1+3L (L+ I )/2]/12

+I 3[1+15L(L+1)/4+15L (L+1) /8]/120+
we obtain the following expression for (H)L to order 1/N:

—(H)L/x =N [(2xox2+Xx2)/x x] +N[3xo —4Xxpx2+(2X +8)xoxz+(3X +1)x2]/(x x)
—L(L+1)[ —4xp —8Xx(Ix2 —(3X —12)xjx2+8Xxpx2+X x2]/(12x2x x), (3)

where X= —(2/7)'~ X. In the SU(3) limit, X= I/J2, x=(I/E3, 42/J3), and Eq. (3) correctly reproduces the well-
known result

—(H)L/x =2N + 3N —3L (L + 1 )/8,

obtainable from the quadratic Casimir operator of the SU(3) group. Minimizing (H)r. with respect to (xp, x2) is most
simply done by setting x2=1 (since x x= 1) and differentiating the resulting expression with respect to xp. We obtain
for xo the equation

N (2xo+X) (xj+Xxo —1)+N[ —Xxo+ (X + 1)xp+3Xx(+ (2X —3)xp]
—L (L + 1 ) (xp + 1 ) [xp +Xx p + 2xp +4Xx(w'+ (X 3 )xp X]/6 =0,

which can be solved order by order. For our purposes it is sufficient to note that the polynomial of the L(L+1) term
contains the factor x$+Xxp —1 and, hence, the solution for xp is independent of L. This proves the intuitively obvious
result that there can be no stretching in the sd-boson system, that is, the boson system does not respond to the rotation
by changing the character of the intrinsic state.

Extension of the above analysis to the sdg-boson system is straightforward though tedious. The quadrupole operator
is replaced by

g„=(sfd+dts) +p(dtd) +y(dtg+g d) 1+IS(g g)

and the intrinsic state by b t= xpst+xd2J +xg4j. Calculation of (H)L, follows similar lines to Eqs. (2) and (3). The
final result is given by

—(H)L/x =N f +N {f (x$+ 10x2 + 31x4 )/3h

+ [5x(I+ (1+7P /2+7y /2)x)+ (35y /18+778 /20)x4]/x x
—[22x/xz+40Pxox/+164yxoxzx4+!24~xox2x4+29P x2/2

+100P yx/x4+71(2y +PS)x2x4+184y8x2x4+1138 x4/2]/3hx x]

L(L+1){f2(x(+37x—$+121x )x.x/12h

—[10x(x)+19Pxox)+80yxox)x4+618'xox2x4+7P x2

+49P yx)x4+35(2y —P b)x2x4+91yBxzx4+288 x4]/3h ], (4)

where p= —(2/7)' p, y=(2/7)' y, 8= —(10/3+77)b, and

f= (2xpx2+ Px2 + 2 y'x2x4+ Sx4 )/x' x, h =3x) + 10x4.
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In the SU(3) limit, we have P = (11/14) (5/7) '

y = (9/7 ) (2/7) ' 8 = (5/7 ) and x = (1/J5,2/ J7,
I/435), and Eq. (4) reduces to

(H)L/K'= 7 [4N +3N —3L(L+1)/16],
+0.3—

in agreement with the result obtained from the Casimir
operator.

Setting xo =1 in Eq. (4) and varying (H)L, with
respect to x2 and x4 leads to two coupled nonlinear equa-
tions which have to be solved numerically. Nevertheless,
progress can be made by noting the general form of the
solutions:

O

+0.2—

x2=x2 [I+y2/N+Z2L(L+I)/N ],

x4=x)[1+yJN+Z4L(L+1)/N ],
(5)

+0.1
10 12

where x2 and x4 denote the leading-order solutions and
the coefficients [y,z] are obtained from the set of non-
linear equations.

Numerical study of the coefficients [y,z] shows that
they vanish only in the SU(3) limit; that is, the structure
of the yrast intrinsic state is independent of L only in
that limit. Thus the sdg-boson system, in general, exhib-
its stretching. The SU(3) limit corresponds to the abso-
lute minimum of (H&L, (in xo,xz, and x4) simultaneously
for all L. The boson system being at the bottom of the
well has no way of stretching. Away from this limit (i.e. ,

a different choice of p, y, and 8), the intrinsic state has a
different minimum for each L.

Next, we implement the foregoing results in the calcu-
lation of g factors. Microscopically, g factors of d and g

FIG. 1. Comparison of the sdg IBM results for g factors of
the ground-state band with experiment (Ref. 11).

Ag = ( —,') ' [N/ (N 1)] 2x z/h. — (7)

Substituting Eq. (5) in Eq. (7), we obtain to order 1/N

bosons are expected to differ substantially because the
latter is less spin saturated. A convenient parametriza-
tion is

(6)

where g represents the part proportional to the angular
momentum, and g' measures the defect between the d-
and g-boson g factors. hg is the reduced matrix element
of the operator (gtg) '), and is given by'

dg =( 3 ) ' [N/(N —1)] (x4/h) [I+6x)(y4 y2)/hN+6xz(Z—4
—Z2)L(L+1)/hN l. (8)

In order to facilitate comparison with experiment, we
combine Eqs. (6) and (8) in the form ground-state band.

g (L) =go+ gi.L (L + I ). (9)

In Fig. 1, Eq. (9) is compared with the recent g-factor
measurements of ' Er. " The parameters used in the fit
are go 0.325 and gL

—0.0014. The value of gL, de-
pends on g' in Eq. (6) and the parameters of the quadru-
pole operator, p, y, and b. Since a precise determination
of these parameters requires a detailed knowledge of the
side bands which is lacking at the moment, it is not pos-
sible to give an estimate of gL. However, it is certainly
within the parameter range of the Hamiltonian.

In conclusion, we offer an explanation for the g-factor
variations in the ground-state band, based on stretching
of the sdg-boson system with increasing spin. Further,
since the sd-boson system cannot stretch, this phe-
nomenon may provide a signature for the g boson in the
relatively low-lying levels (E» ( 1400 MeV) of the
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