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Numerical Analysis of Accelerated Stochastic Algorithms near a Critical Temperature
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We present a numerical study of stochastic differential equations using the XY model in two dimen-
sions as an example. "Accelerated" and "hybrid" algorithms have been implemented and show their ad-
vantages over more standard methods. The (partial) evasion of critical slowing down by accelerated al-
gorithms is studied on a sequence of lattices 16, 32, and 64 .

PACS numbers: 11.15.Ha, 05.50.+q

The study of stochastic differential equations has at-
tracted considerable interest recently. ' Studies of mod-
els have shown that the Langevin and molecular-dy-
namics algorithms are competitive with the standard
Monte Carlo technique. However, the molecular-dy-
namics method does not necessarily satisfy the ergodic
hypothesis so that its equivalence with the microcanoni-
cal ensemble is suspect. On the other hand, the
Langevin equation typically explores phase space at the
rate of a random walk and this is too slow for many ap-
plications. To attack these additional problems, a "hy-
brid" algorithm has been proposed which interpolates
between the Langevin and molecular-dynamics methods.
Moreover, Parisi has proposed a method based on sto-
chastic equations to avoid critical slowing down. Re-
cently, this approach has been analyzed by Batrouni et
al. In the language of the hybrid algorithm the idea is
that by our cleverly choosing the (arbitrary) kinetic en-

ergy of the dynamical Lagrangean it is possible to "ac-
celerate" the low-momentum components of the fields
such that they evolve in "time" as fast as the ultraviolet

L =—g 8;M;t 8~
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where
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8; is an angular variable on the site i =(i t,i2) of a square
lattice of size L, I =1,2 labels directions, x is a free pa-
rameter, and 8~,8$ are discrete second derivatives. The
Euler-Lagrange equation is

modes.
The purpose of this Letter is to present a high-sta-

tistics study of the planar 2'Y model near the Kosterlitz-
Thouless phase transition. We have implemented both
the acceleration and the hybrid improvements on lattices
of sizes 16, 32, and 64 to see if the accelerated algo-
rithm eliminates critical slowing down at an interacting
critical point.

First we set up the basic equations of the simulation.
For more details see Kogut, where a preliminary study
of the XY model on small lattices was presented. Con-
sider the Lagrangean

8; (t) —8;(t —dt) d
8; (t +dt) =8; (t) + dt P(dt) M—

dt de;
cos(8J —8t+ t ). (2)

dt is a discrete time step and the second term of the
right-hand side represents velocity multiplying dt. In the
thermodynamic limit, the equilibrium statistical mechan-
ics of Eqs. (1) and (2) is equal to the canonical ensemble
with the usual XY action. The form of the kinetic ener-
gy in Eq. (lb) can be justified as follows: For x =0 we
obtain the standard 2 8 term used in molecular-dy-
namics simulations where the low-momentum modes
evolve very slowly. For x~0 it can be shown (in a free
theory, for example) that the time step for the infrared

I

(p =0) and ultraviolet (p =tr) modes are related by
dt(0) =dt(tr)(1 —x) 'I . So, choosing x close to 1 the
algorithm accelerates the low-momentum modes and rel-
atively few iterations of Eq. (2) should be needed to gen-
erate a statistically independent field configuration. For
an interacting theory, it is assumed that M will still be a
good Ansatz to attenuate critical slowing down.

Note that the last term of Eq. (2) can be evaluated in

momentum space where M is diagonal, i.e.,

MJ ' icos(8J —8j~t) =F ' M '(p)F icos(8t —8t~t)
J l J l

where F is a Fourier-transformation operator that can be efficiently implemented with use of fast-Fourier-transform
(FFT) subroutines. Since the entire lattice is updated simultaneously we need only two FFT s per sweep. This is a po-
tential advantage of stochastic diff'erential equations over the Monte Carlo technique.
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Above we have described the molecular-dynamics
equations with acceleration. Now consider the hybrid
technique. The basic idea is that we let the system
evolve in time following Eq. (2) during NRF —1 sweeps

(NRF denotes the "number of refreshments"). In the
next sweep, the lattice is updated using the Langevin
equation. This process is now repeated during the whole
simulation. If NRF =1 (NRF &x&), we recover the usual
Langevin (molecular-dynamics) algorithms. In general,
there exists an optimal value of NRF (W 1 or ~) that im-

proves both limits. Note that Eq. (2) is very similar to a
Langevin equation because the velocity should lie in a
Boltzmann distribution exp( ——,

' +8&Mii81), which can
be associated with the distribution of Langevin noise (see
Ref. 5). So, in practice, we only need to replace the ve-

locity by a random variable generated with a Gaussian
distribution to convert a molecular-dynamics step into a
Langevin step.

In our simulation we have two free parameters: NRF
and x. To analyze the advantages of our various algo-
rithms we have measured the relaxation time for the ob-
servable 2 defined as

(4)

We have measured the action S and the susceptibility
Z defined as

ig 1, . . . , L2
cos(8; —

8J ). (5)

Z is also the Fourier transform of the correlation func-
tion at zero momentum, so that it will give us informa-
tion about the behavior of the infrared modes.

To study critical slowing down, we simulated the mod-
el on 16, 32, and 64 lattices. We found that accelera-
tion is relatively more eA'ective on large lattices than on
small ones.

Now we describe our numerical results.
(i) First we have studied small lattices to find an op-

timal value for NRF in the unaccelerated algorithm
(x =0). In Fig. 1 we show r» and rs as functions of NRF
on a 16 lattice with P=0.9 (near the critical tempera-
ture) and dt =0.1 Throughout the text r and NRF will

be given in units of number of sweeps. Each point of
Fig. 1 has been obtained with 1.2x10 sweeps through
the lattice (plus 5x10 sweeps for thermalization). The
errors come from our dividing the sample into a small
number of equal groups.

Note that z&~ are very large in the Langevin and mi-
crocanonical limits. In these cases one needs a huge
number of sweeps between measurements of observables
to get independent numbers. For intermediate values of
NRF the situation is clearly better. There is an extended
regime (NRF —10-100) where rz is reduced by a factor
between 8 and 16 with respect to the Langevin limit. A
qualitatively similar situation exists for zg. In this case
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FIG. 1. Relaxation times for the susceptibility (continuous
line) and the action (dashed-dotted line) as a function of N&tF
in the unaccelerated case.

TABLE I. Relaxation times for X and S on a 16 lattice,

P 0.9, and dt 0.1 for some values of NaF and x. For the
unaccelerated case we used 1200000 iterations, while for the
accelerated 720000 iterations.

&RF

1

1000
25

1

1000
25

3200
1300
220
410
900

75

1400
2200

130
240

2000
85

its optimal N~F is shifted to smaller values. It can be
shown by development of a generalized Fokker-Planck
equation that the systematic errors are independent of
NRF so that Fig. 1 represents a fair comparison of the
eSciencies of the various schemes.

We have repeated our calculation for P =0.8 and have
also considered a 8 lattice. The position of the wide
zone where z&g have their minima does not change ap-
preciably, and so we conclude that it is reasonable to
choose NRF from a small lattice study. We select
NRF=25 as our optimal value. Here both zg and zz are
small.

As the next step in our study we accelerate the system
using x&0 in Eq. (lb). We have done an analysis simi-
lar to the one described above for the unaccelerated case,
but now choose x between 0 and 1 (at NRF =25). Since
the relaxation times are not as large as in the Langevin
case we did only 360000 iterations. For x ~ 0.99 the re-
sults are relatively insensitive to x.

In Table I we show zz~ for some special cases. The
combination NRF=25, x —1 is the optimal one which
improves the unaccelerated Langevin result by a factor
—40 for the susceptibility. Note that the gain between
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the un accelerated and accelerated algorithms is very
large for N~F 1 but decreases with NRF such that for
the optimal NRF =25 the factor is only -3. Therefore,
the optimized unaccelerated hybrid algorithm is a con-
siderable improvement over the unaccelerated Langevin
procedure and there is relatively less to be gained by ac-
celeration. We shall see below, however, that the gain-3 increases with the size of the lattice and is related to
the attenuation of critical slowing down by the accelerat-
ed algorithm.

What about systematic errors in the mean value of S
and X? At x =0, changing NRF led to no changes in S or
X. However, with turning on of the acceleration these
mean values become systematically smaller than the
unaccelerated results by about —0.5% (—3%) for 5 (L)
(the same occurs for bigger lattices). This effect should
be explained by construction of the effective action that
our algorithm is simulating by use of the Fokker-Planck
equation.

(ii) In Fig. 2 we show the results for z as a function
2of P for a 32 lattice. A clear peak in zz near the

Kosterlitz-Thouless transition is present for the unac-
celerated algorithm, even with the optimal value of NgF.
On the other hand, the calculation with NRF =25, x —1

reduces the height of the peak by a factor 5. Since this
gain seems to increase with the lattice size (a factor of 3
for 16 and 5 for 32 ) we believe that accelerated hybrid
algorithms do, in fact, eliminate (partially) critical slow-
ing down. Also some results with NRF=5, x =0 are in-

I

NRF = 25

eluded in Fig. 2 to show the impressive gain an optimized
hybrid algorithm has over algorithms close to the
Langevin limit.

A comment about the stability of the algorithm: For
NttF =25, x =0, and P =0.95, we observe stability prob-
lems that were solved with dt =0.05. For cases with

bigger r the situation is worse since the divergences are
present for a wide range of P near the critical tempera-
ture and the value of dt must be reduced further to
achieve convergence. However, the hybrid accelerated
case has no stability problems. Therefore, it seems to be
that the lower the relaxation times the better the stabili-
ty of the algorithm.

What about central processing unit (CPU) time with
and without the improvements described in this paper?
Let us take as an example NRF =25 in a 32 lattice. The
ratio in CPU time between the accelerated and unac-
celerated cases is around 1.5. And the same ratio be-
tween the code with NRF =1, x —1 and N~F =25, x —1

is about 2-3 due to the time spent in generating Gauss-
ian random numbers at every sweep. Of course these es-
timates will change depending on the details of the code,
but at least they show us the order of magnitude of the
eA'ort. It is clear that the use of FFT subroutines does
not involve an appreciable increase in computing time,
while the implementation of the hybrid method reduces
the CPU time with respect to the Langevin limit.

(iii) In Fig. 3 we have plotted zz vs P on a 64 lattice.
Each point represents an average over 120000 sweeps
through the lattice. The value of NRF was changed to 10
(still in the region where z is minimum in Fig. 1) be-
cause we observe stability problems with NRF=25 near
the critical temperature (all the other cases of Table I
have the same problem for a larger range of P). In Fig.
3 we can see a peak in zz near P—1.0. Changing the
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FIG. 2. Relaxation time for the susceptibility in a 32 lat-
tice at NRF 25, dt 0.1. The points without acceleration
(filled circles) have been obtained using between 720000 and
240000 iterations, while for the accelerated ones (open circles)
we have used 240000 iterations and 1

—x 10 . %'e show
only some typical error bars (their size increases near the
peaks). We have also plotted results for NaF 5, x 0 (show-
ing the beginning of a big peak) and for a 16 lattice. The
lines (solid for 32, dashed-dotted for 162) guide the eye.
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FIG. 3. z» vs P on a 642 lattice with NaF 10 and
1
—x 10
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value of x, we could not avoid the existence of this peak.
This shows that acceleration which uses free field theory
ideas does not completely eliminate the problem of criti-
cal slowing down, but it certainly attenuates the diver-
gence by a big factor. It has been argued in Ref. 5 that
a more convenient method to accelerate algorithms is to
measure the relaxation time for diAerent modes, fit them
with a function r(p), and then use M '(p) =r(p) In.

practice we found this method difticult to implement be-
cause of the large number of sweeps required to measure
relaxation times (even with a limited accuracy) on large
lattices. We believe that eA'orts to improve acceleration
should instead be focused on a more intelligent choice
of L.

Summarizing, in this Letter we have presented a study
of the LY model in two dimensions by use of stochastic
diAerential equations. We have shown that accelerated
and hybrid algorithms represent a very important im-

provement over the more standard techniques, and they
require only a small computational eAort to be imple-
mented. The combination of both methods has the best
performance (even the ultraviolet stability is improved)
reducing critical slowing down drastically.
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