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The problem of gauge and parametrization dependence in self-consistent dimensional reduction of
five-dimensional quantum gravity is discussed. It is shown how the modification of the background-field
method suggested by Vilkovisky is crucial for obtaining the correct result. We find that there are no

physically acceptable self-consistent solutions of the form R x S' at the one-loop level.
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The search for a unified field theory has led physicists
to treat seriously the idea that we live in a space-time
with more than four dimensions. Currently, the most
promising candidate for such a theory appears to be the
theory of superstrings which exists only in ten dimen-
sions. The unobservability of the extra dimensions in

more-dimensional theories is explained generally by the
assumption that they are characterized by extremely
small length scales. This is in fact a very old idea, the
archetypal theory being that due to Kaluza' and Klein
who suggested that electromagnetism was really just a
consequence of five-dimensional gravity where the fifth
space-time dimension was a circle, the radius of which
was on the order of the Planck length. Today nobody
takes this model seriously as a possible unified field
theory; however, it can still serve as a useful testing
ground for some of our ideas concerning gravity in more
than four dimensions. This is the spirit in which we in-

tend the present Letter to be read.
One of the features of theories involving extra dimen-

sions of extremely small size which manifests itself in

five-dimensional gravity is the importance of quantum
effects. This shows up clearly in the paper of Appelquist
and Chodos where they calculated the vacuum energy
for pure five-dimensional gravity in the flat background
R xS'. One defect of this calculation is that the pres-
ence of a non zero vacuum energy means that flat
R xS' can no longer be a solution to the quantum-
corrected field equations. A way around this difficulty
was pointed out by Candelas and Weinberg in a paper
which serves as a model for most studies of quantum ef-
fects in more-dimensional theories. They pointed out
that by including the cosmological constant and fixing it
in an appropriate way, one could ensure that solutions
which had a flat four-dimensional Minkowski space-time
could be found. This procedure is usually referred to as
self-consistent dimensional reduction. Candelas and
Weinberg did not compute the quantum-gravity effects
in such models; however, the calculations of the vacuum

energy and other relevant terms have now been per-
formed by many people.

&lgl = —(l6trGO) ' d xg' (R —2AO).

In order to look for solutions of the form R xS', it is

necessary and sufficient to calculate an expansion for the
effective action of the form

r

d xg i [ga 4+pa R+ ] (2)

where A and 8 are calculable quantities which are de-
tailed below, a is the radius of the extra spatial dimen-

sion, and the ellipsis indicates that higher-order curva-

The important point which we wish to address in this
Letter is that the previous calculations of quantum-
gravitationally induced self-consistent dimensional
reduction are incorrect. The reason for this is that the
results obtained hitherto are all gauge dependent as well

as dependent upon how one chooses to parametrize the
theory. This shows itself in calculations of the vacuum
energy performed in different gauges. The results ob-
tained in the light-cone gauge differ from those found
in the Feynman gauge. More recently, Kunstatter and
Leivo have computed the vacuum energy in a one-
parameter family of covariant gauges and found a result
which depends explicitly on this parameter. In addition,
the calculation has also been performed for different
choices of field variables: Different results were ob-
tained. '

The two problems of the parametrization dependence
and gauge dependence of the results are related. The
resolution is contained in Vilkovisky s" approach to the
effective action. Vilkovisky has pointed out that the usu-
al formulation of the background-field method for the
computation of the effective action is incorrect when ap-
plied to off-shell gravity. (More generally, the usual ap-
proach is incorrect whenever one is forced to use a con-
nection on the space of fields which is nontrivial. ) Few
calculations have been done that use this new
method '

We now outline our calculations. The aim is to com-
pute one-loop quantum effects in the effective action
from the Einstein-Hilbert action
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ture invariants may be dropped.
The standard approach now is to replace the metric in (1) by g„„+h„„and expand the action to quadratic order in

h„„. This results in

S2 J d xg' [—2 h"~h„„+ —,
' h&h —(V"h„„—2 V„h) —h""R„p„h h~—„R""hg„+R""hh„„

+ 2 Rh""h„„—4 Rh Ao—h""h„„+2 Aoh ] (3)
where h =g„„h"". It is important not to take g„„-b„„at
this stage; otherwise it is impossible to calculate B in Eq.
(2). To the classical action are then added the gauge-
breaking term

SG,- „"d~x—g'"(v"a„„—,' v„z)—',a"
and corresponding ghost term

Ssh~t=„d xg' V" [—g„„&—R„„]V",

(4)

(s)

where V" is a complex, anticommuting ghost field. The
choice of gauge parameter a 1 is usually made in Eq.
(4) so that SGn cancels off a similar term in S2., howev-

er, this is not done here. The one-loop effective action
may then be obtained in the usual way by our perform-

I

ing a functional integral.
As we have already emphasized, without implementa-

tion of Vilkovisky's ideas" this will lead to a gauge-
parameter-dependent result. Furthermore, the result
also depends on how we parametrize the fields: If in-
stead of replacing g„„ in Eq. (1) by g„„+h„„,we first
write the higher-dimensional metric in the usual
Kaluza-Klein form

r

y„„+PA„A„PA„
yA„

and then quantize the theory, a different result is ob-
tained. '

The cure here is effected by our adding to the sum of
Eqs. (3)- (S) the Vilkovisky correction

Sv=„d xg' h""R„„h"g ——,
' hh""R„„—,' R(h"—"h„„—,' hz—)+ —,

' Ao(h""h„„——,
' hz),

with the understanding that the limit a~ 0 is taken in the effective action. A discussion of why this is sufficient is con-
tained in Ref. 13. It is not necessary to take a~ 0; however, additional terms then have to be added to Eq. (7). These
additional terms ensure that the final results for A and 8 are independent of a. Details of the calculation of A from
both of these routes, and of B from the former, will be presented elsewhere. '

We find

W(X) = d, ( —
—,
' X)—s, 1sg(s)

64~' '

a(~) -—,d, ( —
—, ~)—,[d, ( —

—, ~) —d, (o)]—13 5 3 11$(3)
96m 64m X 192m

where A, Aoa is dimensionless, and we have assumed Ao & 0. The functions d& and dz are given (for x ~ 0) by

OO &/2

( ) 8 s(z+ g 3 + 3x + 2x z~~&I2

1

d)(x) - —d2(x).

(8)

(lo)

It may be noted that the result for A(X) agrees with the
a 0 limit of the result of Ref. 8, except that the nu-
merical coefficient of Ao is different as a result of the ef-
fect of the Vilkovisky correction. This is seen directly
from Eq. (7) by our imposing R„„-o.

The field equations which must be satisfied to give
R x S' as a solution are easily shown to be

(81tGQ) 'Ao a A (x),

2~~ (~) -s~(~),
(12)

where GD (2+a) 'Go. Equation (12) is simply the re-
quirement that the total effective cosmological constant

(14)
In solving for the root A, o of Eq. (13) one must

remember that we assumed AD & 0, so that there is the
requirement that A,0&0. If a satisfactory root is found,
Eq. (14) then gives a prediction for the radius of the ex-
tra dimension. If the right-hand side of Eq. (14) at Xo is
positive then a is given as a multiple of the Planck

vanish. The true gravitational constant G is defined by
the requirement that the overall coefficient of R in the
effective action be —(16nG) '. This leads, upon use of
the field equations, to's

a /G =16+[8(A,)+ (2A, ) 'A(X)].

297



VOLUME 58, NUMBER 4 PHYSICAL REVIEW LETTERS 26 JANUARY 1987

length; otherwise, a is only real if the gravitational con-
stant has the wrong sign, and hence there are no physi-
cally acceptable self-consistent solutions of the assumed
form.

Solving Eq. (13) numerically gives us ko= —0.117615
which satisfies the criterion that it correspond to Ao (0.
Equations (8)-(11) then give (2ko) 'A(ko) =4.09081
X 10 and 8(ko) = —7.57468x10 . These values
make the right-hand side of Eq. (14) negative, and hence
there are no physically realistic self-consistent solutions
of the desired form. Note that the induced gravity
term' must be included here in order to obtain the
correct conclusion.

In conclusion, we reiterate that Vilkovisky's " ap-
proach to the effective action has solved the problems of
the gauge and field-parametrization dependence found in
previous work on self-consistent dimensional reduction.
(The problem in earlier work was that flat R x S' is not
a solution to the classical field equations, and it is in this
instance that Vilkovisky's approach differs from the usu-
al one. ) Although we have only demonstrated this ex-
plicitly in five-dimensional gravity, it is clear that the
idea extends to more than five dimensions. As such, pre-
vious results for vacuum energies on R XS (N & 1)
are incorrect.
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