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Steatiy-State Chemical Kinetics on Fractals: Segregation of Reactants
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Supercomputer simulations of the elementary A+8 0, diffusion-limited reaction were performed
under steady-source conditions, on a cubic and a fractal lattice. While both reaction orders have the
classical value (X 2), a dramatic segregation ("morphogenesis") appears for the Sierpiriski-gasket
"lattice. " This is relevant to chemical reactions on heterogeneous catalysts, to annealing of radiation
damage and electron-hole recombination in inhomogeneous media, to charge polarization in clouds, and
to possible matter-antimatter distributions in a steady-state universe.

PACS numbers: 05.40.+j, 82.20.Wk

or

2+8 0

in low-dimensional media and on fractal surfaces, '

where p= pz(t) =—ptt(t) is a monotonically decreasing
function of time t. The reaction kinetics in these systems
are well described by

—dp/dt =kop, t

where

1+f ' (A+A reaction),X='
, 1+2f ' (A+B reaction),

with spectral dimension' ' d, =2f and 0» f~ 1. For
the steady-source reaction A+2 A, the system is well
described' ' by the following rate law:

—dp/dt -kop —R, (2)

where R is the constant rate of walker addition, and
X 1+f '. After the A+A reaction reaches a steady
state, this same power-law relation holds'

R k ppss9 (3)

Standard chemical kinetic relationships no longer ap-
ply for the diffusion-limited transient reactions, ' '

A+2 products

where p„is the steady-state density achieved under
steady-source conditions. For the A +8 0 reaction we
report some unexpected results for the value of X [Eq.
(3)]; furthermore, there is a dramatic segregation of
reactants at the steady state.

The transient A+8 reaction has been of recent in-
terest due to astrophysical considerations involving possi-
ble matter-antimatter distributions based on the "big-
bang" theory of the universe. The transient A +8 re-
action is fundamentally different from the A+A reac-
tion since the Toussaint-Wilczek effect, " i.e., the
f/2=d, /4 behavior, is dependent on the formation of
clusters of A and clusters of 8. These clusters are
formed only at very long times and consequently very
low densities. " The Toussaint-Wilzcek effect may
represent so delicate a balance that even very low rates
of walker addition might destroy it. It is not clear
whether the effect of clustering will survive under
steady-source conditions which act to stir the system; it
is not even clear whether steady-source conditions will
necessarily establish a steady state. This is of much in-
terest to continuous creation models of the universe,
charge polarization in clouds, biochemical "morpho-
genesis, " heterogeneous chemical catalysis, amorphous
semiconductors, and photoelectric cells.

Simulations of the A+B reaction under steady-source
conditions were performed on the linear lattice (f= —,',
the planar Sierpinski gasket (f=0.68), and the simple
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TABLE I. Steady-state densities.

Sierpiriski
gasket

RM

Simple cubic
lattice

4
2
1

0.053
0.039
0.027

1

4
1

25
1

50
1

100

0.0067
0.0034
0.0013
0.00094
O.QQ067

cubic lattice (f = I). Random walkers of type 2 and 8
were added at a constant rate, R, and had an equal prob-
ability of landing on any unoccupied site. Each walker
moved with probability z ' to any of its z nearest-
neighbor sites. Only one walker was allowed to occupy
each site, and the A+8 reaction occurred when an A
~alker tried to move to a site occupied by a 8 walker or

6vice versa. Each system was followed for 10 steps with
10 to 20 realizations for each value of R. The rates of
addition are reported (see Table I) in units of
RM =number of A (=number of B) walkers added per
number of time steps, i.e., RM= —,', implies one A and
one 8 walker were added after every 25 time steps on an
M-site structure. The planar Sierpinski gasket

(M =9843 sites) used values of RM =1, 2, and 4; the
linear lattice (M =25 000 sites) used values of
RM ~1 1~1

~
~1 1&i 215 and 1, and the simple cu-

1 1bic lattice (M =25 sites) used values of RM = ioo,
4, and 1. Periodic boundary conditions were used

for the Euclidean lattices; the Sierpinski gasket was im-
plemented with reflective boundaries at each of the three
vertices of the largest triangle. A nonlinear regression,
with R as the independent variable and (p„)as the
dependent variable, was used to obtain X via Eq. (3), in-
cluding the fixed point R =0, (p„)=0. The simulations
were performed on the Control Data Corporation
Cyber-205 computer at Colorado State University.

The linear lattice simulations show a segregation into
A clusters and 8 clusters. However, even 10 steps were6

not enough to establish a steady state (defined by densi-
ties constant in time). The average density kept increas-
ing monotonically with time. The Sierpinski gasket and
the cubic lattice did show the establishment of a steady
state. These steady-state densities are reported in Table
I, and snapshots of A and 8 ~alker distributions on the
millionth step are presented in Figs. 1 and 2 for indepen-
dent realizations on the cubic lattice and the Sierpinski
gasket, respectively. The most striking effect is that
segregation occurs under steady-source conditions for the
fractal Sierpinski gasket ((p„)=0.05) while no segrega-
tion is evident for the simple cubic lattice ((p„)=0.07).

!i "
I,

Fg

FIG. 1. A snapshot of the steady -state distribution,
(p ) 0.07, of molecules A (spheres) and 8 (triangles) in a
simple cubic lattice. Note the random distribution. It takes

1about 10 time steps to establish the steady state. Shown is —,

of the simulated lattice (of a single realization).

FIG. 2. A snapshot of the steady-state distribution of mole-
cules A (vertical bars) and 8 (horizontal bars) on a fractal
structure (a "Sierpiriski gasket"). Note the segregated distri-
bution. It takes about a million time steps to establish the
steady state. During each time step every molecule moves at
random. Altogether about 8x10 molecules landed at random,
moved at random, and participated in this "annihilation"
game. Note that the number of A and 8 molecules is kept
strictly equal, at all times (the red-dominated area is thus
about twice as dense as the blue one in this realization,
&p„&-0.0S).
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We note that Fig. 1 represents only 8 of the total cubic
lattice simulated. We also note that Fig. 2 represents an
extremely asymmetric realization. The "blue" molecules
dominate —', of the area while the "red" molecules are
limited to nearly —,

' of the area (in spite of the fact that
there are equal numbers of red and blue molecules, be-
cause of the strict A to 8 ratio requirements of the algo-
rithm). While the symmetry aspects vary from realiza-
tion to realization, they all exhibit dramatic segregation,
for all densities and all R values.

On the cubic lattice, the Toussaint-Wilczek effect is
lost, once the steady source of walkers is included. In
contrast with their transient 8+8 results, which
translate to X=3 in Eq. (2), the steady-state 3+B re-
sults give X=2.00+ 0.02, with use of Eq. (3), for densi-
ties as low as 0.1%. While the Toussaint-Wilczek tran-
sient system results in segregation of the reactants, 2
and 8, no such segregation is found for the steady state
(see Fig. 1). These differences between the transient
and steady-state results are attributed to a net effect of
stirring caused by the steady addition of randomly distri-
buted walkers. Transport on the simple cubic lattice is
so efficient that even a very slow rate of walker addition
is sufficient to cause a breakdown of the X=l+2f
rule, Eq. (1).

On the other hand, the Sierpinski gasket under
steady-source conditions shows dramatic segregation of
A and 8 clusters. As pointed out for the cubic lattice,
this steady-state segregation ("morphogenesis" cannot
be simply attributed to the Toussaint-Wilczek effect.
Under steady source con-ditions the Sierpinski gasket
(f=0.68) yields X=2.0~ 0.2; neither the X=1+2f
=3.9 rule nor the X=l+f '=2.5 rule is followed.
Steady-state densities are reported in Table I; however,
local densities may vary considerably. High-density be-
havior for the 2+8 reaction may be expected to yield
%=2 in analogy with the high-density results for the
3+3 steady-state problem, ' but the cause for the ob-
served segregation is not obvious. We note that very
low-density simulations are orders of magnitude more
difficult.

In conclusion, the A+8 0 reaction under steady-
source conditions is totally different from the transient
4+8 reaction. For the linear and Sierpinski lattices,
the results for the A+8 reaction under steady-source
conditions show large density fluctuations, and an in-
creasing segregation during the approach to the steady
state. For the linear lattice, a steady state is not ob-
tained, even after 10 steps. A steady state is observed
for the (finite) fractal Sierpiriski gasket and the simple
cubic lattice where the kinetics are well described by Eq.
(3). A value of X=2 holds for the simple cubic lattice

and the Sierpinski gasket. In contrast with the cubic lat-
tice, on the Sierpinski gasket we do find the surprising
result of A and 8 segregation at steady state. This is
reached only after the local segregation fluctuations have
been converted to large-scale segregation ("morpho-
genesis") .
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