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Dynamics of Three-Dimensional Ionospheric Plasma Clouds
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The first self-consistent, three-dimensional analysis of plasma cloud evolution in the ionosphere is
presented. It is demonstrated that there is a preferred perpendicular scale size associated with 3D plas-
ma clouds given by r, —c(T, + T;)leB, V„t „where r, is the cloud radius, T, is the temperature of the a
species, B, is the ambient magnetic field, V„ is the neutral wind speed, and I,( I/J2.

PACS numbers: 94.20.Vv

For more than two decades, the evolution of artificial
plasma clouds in the near-earth space environment has
been of interest to space physicists. Research in this
area continues to be exciting and vigorous, especially in

light of the recent Active Magnetospheric Particle
Tracer Explorer mission' and the upcoming Combined
Release and Radiation Effects Satellite mission. Origi-
nally it was thought that artificial clouds would simply
be a diagnostic of ambient plasma conditions; it was soon
discovered that they do not simply convect because of
ambient fields or winds, but, for example, can become
unstable and rapidly structure. The mechanism which
causes the structuring of ionospheric clouds is the Ex B
gradient drift instability. This instability has been ex-
tensively studied both theoretically and computation-
ally. ' ' Although a considerable amount of research
has been carried out on this instability, there are several
deficiencies with regard to its application to ionospheric
plasma clouds. First, the bulk of theoretical analysis has
focused on the short-wavelength limit (i.e., kL)) 1 where
k is the wave number and L is the density-gradient scale
length associated with the cloud boundary). However,

observationally the gross structuring of barium clouds is
clearly in the long-wavelength regime" (i.e., kL «1).
And second, until quite recently, the finite parallel extent
of the cloud along the ambient magnetic field has been
neglected, as well as any parallel dynamical effects. Pro-
gress is being made in this area; however, a self-
consistent, long-wavelength, three-dimensional analysis
of plasma cloud evolution has been lacking.

In this Letter we present the first fully three-dimen-
sional study of plasma cloud dynamics in the long-
wavelength limit. We first develop an equilibrium based
upon a waterbag model. We then perform a perturba-
tion analysis on the equilibrium. The important result of
this analysis is the derivation of a stability criterion for
the large-scale structuring of ionospheric plasma clouds;
i.e., clouds are stable for r & r„where r is the radius of
the cloud and a r, is the critical radius and function of
the local plasma parameters.

The general three-dimensional equations for a warm
plasma cloud in a uniform magnetic field B=Be, and a
uniform background neutral wind V„=V„e„(see Fig. 1)
are given by

Bn c . B 1 B& Te Bn——Vpxz Vn+ =0
Br B Bz eq, Bz ne Bz

C ~in + B 1 B& Te Bn
V& nV&y+D&;V~n+ z V„Vn+

B n; Q; Bz et', Bz ne Bz
=0, (2)

where q, =m, v, /ne is the parallel resistivity, v, =v„
+ v«, D~; = (v;„/0;)cT;/eB is the perpendicular ion dif-
fusion coefficient, v„ is the electron-ion collision fre-
quency and 0, and v,„are the cyclotron and neutral col-
lision frequencies of the species a. Equation (1) is the
electron continuity equation and (2) arises from charge
neutrality (V J =0). We consider the electrostatic limit,
take T, and T; to be spatially uniform, assume v,/0„
v;„/fl;«1 so that Hall terms can be discarded, and
neglect ion parallel diffusion and perpendicular electron
diffusion.

In the potential equation presented in (2) the parallel
conductivity greatly exceeds the transverse Pederson
conductivity; as a consequence the scale lengths along

Bn
V V +v&nB B@'Bn—V&xz Vn+ n —I

Bt 0; Bz Bz Bz
(3)

V. nV@+ Bn/By —I B n/Bz =0,

the magnetic field greatly exceed those in the transverse
direction. It is therefore convenient to define a set of di-
mensionless variables in which the conductivity is iso-
tropic and all scale lengths become comparable. For a
plasma cloud of perpendicular scale length r, the ap-
propriate parallel scale length is L, =r, (A, A;/v, v;„) '~2,

where for simplicity we take v, and v;„ to be spatially
uniform. The dimensionless equations then become
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3)/(1+M/3) (normalized to the neutral wind speed V„).
In the drifting frame the potential is given by

Np„= Vpr sin8sinp(1 —r )H(r —1). (7)

The ambipolar potential @p,(r,8) is produced by the
term proportional to I in (4). Using standard tech-
niques, we find

@p, =a2+P2(cos8)/r, r & 1,

@p =ap +az P2(cos8)r, r & 1,

(sa)

FIG. 1. Plasma configuration and spherical geometry used
in the analysis.

where @=p+ T; inn/e, I =c(T,+ T; )/eB, V„r„and the
remaining dimensionless variables are defined by tV, /r,

t, r, V V, L, B/Bz tl/Bz, and n/nb n, where
nb is the density of the uniform background. The paral-
lel compression terms in (3) are small since v;„/0;« I
and can be neglected. The continuity equation then sim-
plifies to

Bn/Bt —V@Xz. Vn =0. (5)

np(r) =MH(1 —r)+1, (6)

In the limit |I/Bz =0, (4) and (5) contain no free pa-
rameters so that the transverse scale length r, is undeter-
mined. However, when parallel dynamics are included,
the parameter I enters the equations. Since the remain-
ing terms are all of order unity, I can, at most, be of or-
der unity so that the minimum scale size is simply
r, —c(T,+ T;)/eB, V„. Thus, for a 3D plasma cloud, a
simple but rather general dimensional analysis yields a
minimum preferred scale size. Moreover, (4) and (5)
provide a new set of equations which include parallel dy-
namics, and may be amenable to numerical simulation
techniques such as contour dynamics. '

We now examine the stability of a waterbag plasma
cloud which is a sphere of radius 1 in our dimensionless
units,

where

a+ = —I [M+ —', (M+1)ln(M+1)]/(M+ —,
' ),

a2 = —I [M —ln(M+1)]/(M+ 2 ),

ap = (I /3)ln(M+ 1),

and P2 is the second-order Legendre polynomial. This
ambipolar potential causes the cloud and surrounding
plasma to rotate around the axis of the sphere which is
aligned with B.

We now investigate the linear stability of the equilibri-
um defined in (6)-(8). The evolution of the plasma
cloud can be described by the evolution of the local ra-
dius of the plasma boundary R = I+R(8,&,t),

n =MH(R+1 —r)+1,
where R is the perturbed radius. The density perturba-
tion, n = —R8np/8r, is zero away from the equilibrium
cloud boundary at r =1. Thus (4) implies that the per-
turbed potential @satisfies the equation

V @=0

everywhere except r =1. The linearized equations for R
and @ are obtained by use of the continuity equation to
solve for R and then by derivation of a set of jump condi-
tions for @ and @' at the boundary. Substituting the ex-
pression for n in (9) into the continuity equation, we ob-
tain an equation for R,

AIR + 84 + |I (RC ')+ ot8 o ~R =0,
at aq aq

' "
a8 aq

where the prime denotes a derivative with respect to r.
Since R is independent of r, (11) must be continuous
across the boundary at r = 1 or

where 0 is the Heaviside step function. In the physical
coordinate system the cloud is greatly extended along z.
The equilibrium potential @0 of such a spherical cloud
consists of two components: the first from the polariza-
tion of the cloud by the neutral winds; and the second,
the ambipolar potential required to balance the electron
pressure parallel to the magnetic field 8,. The neutral
wind causes the cloud to drift with a velocity Vp (M/

amp@+R@0+cot OR
8

where ~ denote r 1 ~ e, respectively, with e 0.
Equation (12) requires that @ undergo a jump at the
boundary of the cloud. Similarly, we integrate the
linearized version of (4) across the boundary to obtain

279



Vor UME58, NUMOER3 PHYSICAL REVIEW LETTERS 19 JANUARY 1987

the discontinuity in the slope of @',

-, ++ 2 8 R+ 3M cosp BR
no@' +lI cot 0 + M+3 sin8 8p

1 8 . - ~+0 8 R
sinOR no +MI (2cos 8 —1)

sin8 88 tl8 88

3 . tiR 3+M I cot8 —7I cos8sin8+ cos8sing —2MR I P2+ sin8sinp =0.
M+3 a8 M+3 (i3)

To gain some insight into the nature of the E&B instability in this geometry, we examine the local dispersion relation
by assuming p —,R —exp(ike8+ik&p —imi ). Since kg introduces the parallel dynamics into the equations which we ex-
pect to be stabilizing6 while the instability is driven by k&, we assume that k&»kz»1. From (11),we therefore find

-exp[% k&(r —1)], where we have taken the solutions which decay away from the boundary. Equations
(11)-(13)then yield the local eigenvalue

co =i yocosg/sin8+k&Vd —[MI /(M+2)] cot28k&~,

where

Vd(8, &) = [3Vosin8sinp —
—,
' a2+ (5cos 8 —1) —(M+1)a2 ]/(M+2)

(i4)

and yo =k&3M/(M+2)(M+3). The first term on the right-hand side of (14) produces instability on the back side of
the cloud where cosp&0. The remaining terms cause the mode to propagate in the p direction. The important
feature of (.14) to notice is that the local propagation velocity depends on 8. The differential propagation prevents the
mode from retaining its flutelike character (i.e., |1/a8=0) by "shearing" the striations and thereby forcing ti/88%0.

To examine this effect on the instability, we retain ti/88&0 but consider it small compared with k&. We derive an
equation for R around 8=+/2 where the shear is weakest (Bco/|18—0). To lowest order,

ri R/88 +(I+ib)k~ (8 x/2) R—+[co—
k~ Vd( 8=+ /2) —iyp cosy](M+2)R/MI =0, (is)

Vo sin&0 = (M+ 1)a2 /3 —a2 /2. (i7)

where 6«1. The parameter 6 arises from parallel dif-
fusion in the continuity equation and has been included
to insure that the proper evanescent solution to (15) can
be identified. The bounded solution to (15) is given by
R-exp [ik&(1+ib/2) (8 —x/2) /2] which becomes in-
creasingly oscillatory (because of the shearing of the stri-
ations) as 8 deviates from x/2. The local propagation
frequency and growth as functions of the angle p are
given by

co=iyp[cosp —
—,
' I (M+3)]+k~Vd(8=+/2, p). (16)

The shear enters the dispersion relation in (16) through
the dissipative term I .

In a previous investigation of the stability of a
cylindrical plasma cloud to modes with k, ~0, we found
that exponentially growing, localized modes formed at a
finite angle &0 where the local propagation velocity of the
perturbations vanished. In the present 3D equilibrium
no such localized solutions exist since (16) is first order
in k&. However, the importance of this previous calcula-
tion was not that a localized solution was found but that
at a finite angle &0 the diamagnetic propagation and
fluid flow combined to produce a nonpropagating mode
which could grow without convecting to the stable front
side of the cloud. A similar nonpropagating mode exists
for the present equilibrium at the angle po defined by
Vd (8 =x/2, po) =0 or

The growth rate y of the instability at this angle is given
by

y =
yo [cos(kp I (M+ 3)/3]. (18)

Equations (17) and (18) constitute a dispersion relation
for the E&$ instability for the 3D equilibrium under
consideration.

Simple expressions for the growth rate y can be ob-
tained in the limits of M)) 1 or M«1. For M»1, we
find sin&0= —MI /3 so that y =3k&[(1 —M' r'/9) '"
—MI /3]/M. The mode is stable for I & 3/&2M. In the
limit M«1, we find sin&0=I or y=k [(1—I )'
—I ]/2 and the mode is stable for I & 1/ 2.

More generally, for any M the ExB instability is
stable for I exceeding a threshold, I,. The parameters
I, and &0 can be calculated from (19) and (20) and are
shown as functions of M in Fig. 2. I, approaches a max-
imum value of I/J2 for M«1 and is asymptotic to
3/42M for M&)1. Clouds with I &I, are stable and
those with I & I, are unstable. Moreover, we note that
&0—45' for M « 1 and that po ——45' for M » 1. Thus,
the angle of mode localization with respect to the am-
bient neutral wind is a function of M. This feature may
be an observable but would probably be difficult to
detect experimentally.

We apply this criterion to ionospheric barium clouds.
For typical clouds released at 180 km we note that T,= T; =0.1 eV, 8—0.5 G, V„—50 m/sec, and M —2-10
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1.0 pie, the Rayleigh-Taylor instability which is believed re-
sponsible for the generation of equatorial spread F, '

and the Kelvin-Helmholtz instability which has been
suggested as a source of turbulence in the high-latitude
ionosphere and magnetosphere, ' could be affected by
3D dynamics especially in regard to coupling to regions
of different conductivities (e.g., D region, E region).

This research was supported by the Defense Nuclear
Agency.

'10

20

0

-20

-60
10 ' 10' 10' 10

FIG. 2. Plots of 1, and po (degrees) vs M. Clouds are stable
for I & I, and unstable for I (I,. Also, note that &0 is a func-
tion of M.

(which corresponds to I,—0.2-0.6). Also, we note that
v;„—1 sec ' and 0;—160 sec ' so that the condition
v;„/0; « I is well satisfied. Thus, we find the critical ra-
dius of barium clouds to be r, —130-400 m, which is
consistent with observations. '

In conclusion, we have developed the first self-
consistent, three-dimensional analysis of plasma cloud
evolution in the ionosphere on the basis of a waterbag
model. We initially argued, on the basis of a simple di-
mensional argument, that there is a minimum preferred
perpendicular scale size associated with 3D plasma
clouds given by r, -c(T,+ T;)leB,V„. We subsequently
confirmed this scaling with a detailed analysis, and
demonstrated that clouds with r, (c(T,+ T; )jeB,V„I,
are stable to large-scale structuring by the Ex B gradient
drift instability. This critical scale size is consistent with
observations. Finally, we add that this analysis could
also be used as a prototype calculation for other plasma
flute modes in a three-dimensional geometry. For exam-
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