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The effect of a finite bending rigidity x' on flexible, polymerized surfaces without self-avoidance is
studied via the Monte Carlo method. Unlike linear polymers or liquid membranes, these surfaces under-
go a remarkable finite-temperature crumpling transition, with a diverging specific heat. For small
x'/ksT, the surface is crumpled, and the radius of gyration Rg grows as (InL) "2, where L is the linear
size of uncrumpled membrane. For large «'/k T, we find that the surface remains flat, i.e., Rg~L. Our
results strongly suggest a finite-temperature crumpling transition in polymerized self-avoiding mem-

branes as well.

PACS numbers: 64.60.Fr, 05.40.+j, 82.65.Dp, 87.20.Cn

Recent theoretical investigations have explored the
properties of flexible sheet polymers (‘“‘tethered” sur-
faces) characterized by a fixed internal connectivity.'
Tethered surfaces can be synthesized by polymerizing
lipid monolayers or bilayers?; bilayers can be made more
flexible via the addition of short-chain alcohols.® There
are fascinating accounts of cross-linked methyl
methacrylate polymer assembled and then extracted
from the surface of sodium montmorillonite clays.*
These materials are predicted to display a variety of in-
teresting properties: For example, without self-
avoidance, their radius of gyration R increases as
(InL) "2, where L is the linear size of uncrumpled mem-
brane, while the introduction of self-avoidance leads to
Rg~L", with! v= % Implicit in this description is the
idea of a surface which is crumpled on scales large com-
pared with a finite persistence length £(7°). For linear
polymer chains this length determines the effective
monomer size, and is always finite, with an Arrhenius
temperature dependence.® Introducing bending or
bending-and-twisting force constants along the chain
only modifies the persistence length, with no effect on the
asymptotic behavior. ®

For membranes, the persistence length is basically a
correlation length associated with order in the local nor-
mals to the surface.” It is believed that the persistence
length is also finite in membranes with liquidlike inplane
order. Detailed renormalization-group calculations of
the bending rigidity® show that short-wavelength undula-
tions soften the macroscopic rigidity and lead to a per-
sistence length which diverges (exponentially) only at
T=0. As emphasized by Polyakov,’® there is a useful
analogy with two-dimensional models of Heisenberg fer-
romagnetism: The surface normals are like a (purely
longitudinal) spin field, and a crumpled surface is like a
Heisenberg paramagnet. The undulations which destroy
long-range order in surface normals are similar to spin
waves.

What happens when we combine bending rigidity with
the fixed connectivity of a tethered surface? For small

rigidity one might expect an increase in the persistence
length, but no change in the asymptotic behavior. Re-
cently, however, it has been argued that a finite bending
rigidity can qualitatively change the behavior of poly-
merized surfaces.'® The surface is assumed to be locally
flat, and written with use of the Monge parametrization
in terms of a normal displacement f, r(x,x3) =(x,x,,
f(x1,x3)). To lowest order in f and its gradients, the
surface energy may be written'!

F=1& a2+ 1 [a2xQuuitrud, (1)

where the strain matrix u;; is related to f and the in-
plane displacements u; by u;; =7 (8;u; +8;u; +98,/9,/),
K is the bending rigidity, and u and A are Lamé con-
stants. At low temperatures, undulations are suppressed
by the nonzero in-plane shear modulus. The renormal-
ized rigidity increases with L, in a way which leads to
long-range order in the normals. The equilibrium sur-
face configurations are flat, in the sense that Rg—~L.
The authors of Ref. 10 suggest, but do not prove, the ex-
istence of a finite-temperature phase transition separat-
ing a low-temperature flat phase from the high-temper-
ature crumpled one.

In this paper, we test this prediction via Monte Carlo
simulations of tethered surfaces with a variable bending
rigidity. We find strong evidence for a finite-tem-
perature crumpling transition, characterized by a diverg-
ing specific heat and persistence length. Because these
simulations were quite time consuming, most of our mea-
surements were made on surfaces without self-avoidance.
We argue, however, that the crumpling temperature
found here is actually a lower bound on a similar transi-
tion in real, self-avoiding membranes. Self-avoidance,
moreover, should be irrelevant in the high-rigidity un-
crumpled phase studied here.

We consider a two-dimensional (2D) triangular array
of atoms with positions {r;}, embedded in three dimen-
sions. The energy assigned to a particular configuration
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of particles is

=—x'Y (ngng— D+ I VUi —r1;|). )
(a,p) i, j)

The first sum is over pairs {a,8) of unit normals {n}
erected perpendicular to each elementary triangle in the
surface (see Fig. 1). In a real lipid membrane, these
normals would be aligned along the long axis of the lipid
molecules. The bending rigidity x' plays the role of a
“Heisenberg exchange coupling” between neighboring
normals. With use of the Monge form of the normal,
n==(9,f,9,f,1), it is straightforward to check that this
contribution to the energy reduces to the first term of Eq.
(1) in the continuum limit, with K«x’, plus boundary
terms. The second summation in Eq. (2) is over neigh-
boring pairs of atoms (/,j) in the array interacting via a
tethering potential ¥ (r), which vanishes for 1 <r < /3,
and is infinite otherwise. '

If the array is confined to a plane, it will behave like a
2D isotropic solid with entropy-induced elastic constants
u and A which are strictly proportional to temperature.
Thus, this contribution corresponds to the nonlinear
stretching energy displayed in the continuum model of
Eq. (2). Our choice of surfaces with entropic in-plane
elasticity was made for computational convenience; the
long-wavelength elastic properties should be similar to
real polymerized ampiphiles, whose elasticity arises from
a combination of van der Waals and covalent forces.
According to Ref. 10, the dimensionless nonlinear cou-
pling between surface undulations in this model is pro-
portional to Ko=4a?u(u+1)/kgTQu+1), where a is
the 2D equilibrium lattice constant. We have mea-
sured'? 4 and A in a simulation of a tethered surface
confined to a plane, and find K¢ = 20, so that nonlineari-
ties should have a strong effect on the bending undula-
tions characteristic of a purely liquid membrane.

Our simulations were carried out by first excising from
a triangular lattice a hexagon with diameter L atoms
across (L =3,5,7, 11, and 15) and then equilibrating it

FIG. 1. Shape of the surface for two different values of «.
For clarity, atoms are shown at 1 of their true hard-sphere ra-
dius. Unit normals n to two elementary triangles are shown.

by use of the Monte Carlo, or Brownian-dynamics,
method, as in Ref. 1: We randomly chose an atom and
attempted to move it by s =0.2 in a randomly chosen
direction. The probabilistic decision, whether to allow
the move, was made by comparing the initial and final
energies of the system. During a single “Monte Carlo
time unit,” on the average, one attempt of position
change is made for each atom. Temperature is measured
by the reciprocal of the dimensionless rigidity, x=«x'/
kgT. For k=0, the equilibrium time (or the time be-
tween two statistically independent configurations) is
given by! the Rouse relaxation time zo== N/s?, where
N=(3L2+1)/4 is the number of atoms in the surface.
The total simulation time ¢ for each x was 300t for
L <11, and 5007 !® for L =15. Such simulation times
produce good statistical averages for small «; the surface
is crumpled in this case, as evident from Fig. 1.

For large x the surface appears to be flat (see Fig. 1).
The relaxation time ; of a flat surface can be found by
consideration of the lowest vibrational mode of a stiff
membrane. The flexural modes of membranes are very
soft,!! leading to large relaxation times'* 7, =~ 0.036 N %/
ks2=0.036 N7o/k. Thus even for L =15 (with x~1)
we still have ¢ = 1007, and good equilibration.

The above estimates of relaxation times may not be
valid close to the transition point, where one expects crit-
ical slowing down. It is reasonable to assume that even
close to the transition point this time will not exceed the
reptation time' of the surface. Since our ¢ is always
larger than or equal to this time, we may presume that
we always have a well-equilibrated system, although the
statistics may be poor near the transition point.

To check whether the crumpled and flat behaviors de-
picted in Fig. 1 indeed reflect two different asymptotic
regimes, we measured R for various values of L and «,
and attempted to determine the asymptotic values of the
persistence length & defined via Rg=&(nL) 2 (T > T.),
and obtained from our simulations by extrapolating
E(x,1/L) to 1/L =0. For small x (high temperatures), &
becomes independent of L (after an initial crossover),
while for large x it seems to diverge with increasing L.
The extrapolated values of & are depicted in Fig. 2.

At low temperatures, it is convenient to define a pa-
rameter ¢, via Rg=¢L (T <T.), which measures the
shrinkage of a macroscopically flat surface due to undu-
lations. We measured ¢ by extrapolating {(x,1/L) to the
limit 1/L =0. Large fluctuations in surface normals will
produce small values of £: In fluid membranes, we would
always expect that {=0, because in crumpled surfaces,
Rg~L", with v<1. As shown in Fig. 2, ¢ in fact
remains finite for tethered surfaces, and vanishes at a
finite value of x. From our results for & and ¢, we con-
clude there is a continuous finite-temperature phase
transition at k. =0.46 £ 0.03.

An additional confirmation of the two distinct regimes
indicated in Fig. 2 can be obtained from the measure-
ment of the mean ratio 4 between the smallest and the
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largest principal moments of inertia, which is a quantita-
tive measure of asphericity. For a fixed L the asphericity
is a monotonically decreasing function of x. However,
the increase in L affects differently the low- and high-
temperature regions: For x> k., A decreases with in-
creasing L, i.e., the surfaces becomes more flat, while for
kK < k. the surfaces becomes more spherical (A in-
creases) with increasing L.'* For large «, this implies a
renormalized rigidity which increases with L as suggest-
ed in Ref. 10.

The presence of the phase transition is also clearly
seen in the specific heat, which has been found from en-
ergy fluctuations in the surface. The specific heat (per
atom) C has a well pronounced peak, which increases
with L, as depicted in Fig. 3. For k=0, the fluctuations
are purely entropic, and C =0. (We suppress the trivial
kinetic part 3 kg of the specific heat.) For sufficiently
large «, one can neglect the coupling between the trans-
verse fluctuations, and obtain C = % kg, in accordance
with Dulong-Petit law. (The in-plane oscillations do not
contribute to the specific heat because the elastic con-
stants are proportional to temperature.) In the absence
of a phase transition one might expect a smooth interpre-
tation of C as « changes from 0 to oo. Figure 3, on the
other hand, shows a pronounced peak, which sharpens
for large L. The peak maximum for large L is close to
the value k. determined from Fig. 2.

The transition we observe seems very nearly second or-
der, and we can severely limit the size of any possible
first-order transition: Following the method of Dasgupta
and Halperin,'® we find that the jump of the entropy at
the transition point cannot exceed 0.08, which is smaller
than any other parameter in the problem.

We have also examined correlations in the layer nor-
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FIG. 2. Extrapolated values of & and ¢ (see text) vs
K‘=K"/kBT.
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mals. For k> «., we find that (n(x)-n(0)) falls off very
slowly, i.e., the normals have a strong positive correlation
over the entire system, consistent with long-range order
as x — oo, where x is measured in Cartesian coordinate
system (x,x;) attached to the fluctuating surface. At
small k, we expect that the probability of a particular
surface configuration in the continuum limit is propor-
tional to

exp [— IfkfafzxIdr(xl,xz)/a'x| 24,

where! K = 0.67 for k=0. In such a model, one expects
that correlations in the normal

n(x) < (dr/dx ) x (dr/dx>)

decay rapidly to zero. Our simulations for small « are
consistent with exponential decay, dropping to zero
within, e.g., two to three lattice spacings, for k =0.25.

To make contact with real polymer surfaces,®? we
must discuss effects of distant self-avoidance. The criti-
cal temperature found here is clearly a /ower bound on
the critical temperature with self-avoidance, since ex-
cluded volume interactions can only flatten the surface.
Self-avoidance effects should be negligible in the low-
temperature flat phase, although they will certainly swell
the high-temperature crumpled one.! We have calculat-
ed the normal-normal correlation functions with self-
avoidance in the high-temperature limit x=0. These
correlations decay appreciably within three to five lattice
spacings, suggesting a high-temperature crumpled phase
as well as a low-temperature flat one. One expects, how-
ever, that the power-law density-density correlation
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FIG. 3. Specific heat (per atom) C as a function of x for
surfaces of different sizes L.
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functions associated with self-avoidance will lead to
algebraic, rather exponential, decay of the normal-
normal correlations in the crumpled phase.

At the transition, one might expect the radius of gyra-
tion of tethered surface without self-avoidance to grow
like RG~L". A rough attempt to extract v' from our
data give v'=0.78 2 0.10. We may treat the excluded-
volume interaction as a small perturbation and calculate
its scaling at the critical point which has been obtained
for the phantom surface. From the simulation we esti-
mate that the number of overlaps between the atoms at
the transition point increases as L®, with w=3.6 +0.3.
The relevance of the excluded-volume interaction is
determined by L%/RZ~L”, where y =w—3v'. Accord-
ing to our estimates y is positive, indicating that the im-
portance of the excluded volume will increase, as one
goes to larger length scales. This result suggests a new
critical behavior at the transition for self-avoiding sur-
faces.
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