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Supersymmetry between Deep and Shallow Nucleus-Nucleus Potentials
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Supersymmetric quantum mechanics is applied to the determination of a shallow potential which is
phase equivalent to a deep potential, and whose bound spectrum is identical except for the ground state
which is suppressed. With this method, the nonphysical bound states encountered in the spectrum of mi-
croscopically founded potentials can be eliminated. The resulting shallow potentials present for small r
values an r singularity in accord with a generalized Levinson theorem.

PACS numbers: 24. 10.Ht, 03.65.Nk, 11.30.Pb

The deep or shallow nature of nucleus-nucleus poten-
tials has been a controversial question for a long time. '

This problem may seem academic if both types of poten-
tials fit accurately the same set of existing experimental
data. However, their predictions diAer in general in oth-
er energy domains or for properties involving an explicit
use of wave functions, such as electromagnetic transition
probabilities or radiative-capture cross sections.

Since experimental data do not provide a definite
answer to this question, theoretical information is
searched for in microscopic models, i.e., models which
make use of fully antisymmetric scattering wave func-
tions. These microscopic approaches provide phase
shifts which satisfy a modified Levinson theorem: The
forbidden states, i.e., energy-independent solutions of
the nonlocal microscopic equations, have to be taken into
account in addition to the bound states in order to ex-
plain the phase-shift variation between zero and infinite
energy. Theoretical studies based on these microscopic
descriptions of scattering converge towards an accurate
description of the nucleus-nucleus interaction in terms of
deep local potentials. These potentials possess a num-
ber of unphysical bound states which simulate the for-
bidden states of the microscopic approach. The addi-
tional bound states determine a high-energy behavior of
the phase shifts which agrees with the generalized Levin-
son theorem. The number of forbidden states can in

general be calculated in a simple way. This prescription
provides deep potentials which fit accurately the data for
the transparent a+ a (Buck, Friedrich, and Wheatley ),
a+ ' 0 (Michel et al. ), and a+ Ca (Michel and Van-
derpoorten ) systems. The real part of these potentials
does not depend —or depends weakly —on energy and on
angular momentum.

In contrast, shallow potentials which fit the same data
are often found to be strongly angular-momentum
dependent, as illustrated by the a+a example. Howev-
er, shallow potentials do not present the unsatisfactory
occurrence of unphysical states in their bound spectra.
Their bound states can be interpreted as approximations
of physical states of the fused nucleus. Their main draw-
back is that the usual Levinson theorem prevents them Ho=ho Ao +o (2)

from reproducing the high-energy behavior of the micro-
scopic phase shifts. Recently, extending an idea of
Swan, Michel and Reidemeister' have shown that shal-
low singular potentials are able to reproduce the micro-
scopic phase shifts in agreement with another extension
of the Levinson theorem. " These authors derived phe-
nomenological singular potentials which are phase
equivalent to the real part of the e+ ' 0 deep potential.

In Schrodinger quantum mechanics, Hamiltonians
with identical spectra, except possibly for one bound
state, can be interpreted as components of a supersym-
metric Hamiltonian. ' ' Each component can be de-
rived from the other one with a very simple tech-
nique. ' ' Recently, Sukumar has studied the diAer-
ences between the phase shifts provided by these super-
symmetric partners. ' The aim of the present Letter is

to show that supersymmetry establishes a relation be-
tween deep and shallow (but singular) local potentials.
The two potentials related by this technique provide ex-
actly the same phase shifts. Moreover, a difI'erential
operator links their wave functions. I shall rather closely
follow the presentation of Sukumar, ' ' which only in-

volves elementary quantum mechanics. I refer the
reader to Refs. 12-15 for additional information about
supersymmetry.

For the 1th partial wave, nucleus-nucleus scattering is
described by the Schrodinger radial equation,

Ho@0=( —d /dr + Vo) yo =Ego,

where E is the c.m. energy and yo is r times the radial
wave function. Units are chosen in such a way that
h /2m (where m is the reduced mass) is unity. The
nucleus-nucleus potential Vo includes nuclear, Coulomb,
and centrifugal terms. In order to simplify the discus-
sion, I assume the nuclear term to be real, local, and reg-
ular. In other words, we are mainly interested in proper-
ties of the real part of traditional optical potentials. The
orbital momentum superscript I appearing in (l) will in

general be dropped in the following.
The Hamiltonian Ho can be factorized as' '
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where Dp is the factorization energy. The first-order
difterential operators Ap and Ap are defined by' '

= (Ao+ ) t = —d/dr+ d lnyo(@o)/dr, (3)

where yo(8o) is a solution of (1) with energy 6o. Notice
that yo(No) must be nodeless to ensure that Ao+ and Ao
be bound. The factorization energy must therefore be
smaller than or equal to the ground-state energy Ep of
Hp. With these definitions, one can associate to Hp a su-

. persymmetric partner

discussion, the spectra of H~ and H2 are identical. To
any physical state of H] with energy E corresponds a
state of H2 with normalized wave function

y2 (E) = (Eo —E ) 'A
i A o yo(E),

where A
~ is given by (3) with y~ (Eo ) replacing

I//o(Eo). The important property of (g) is that, because
of the choice of D~, the second-order operator A] Ap
does not modify the asymptotic behavior of yp. Hence,
for any E, one has

H] =Ap Ap++6p, (4) a2'(E) = so'(E). (9)

which will share (almost) the same spectrum. Indeed,
the Hamiltonians Hp and H~ can be interpreted as the
diagonal elements of a supersymmetric Hamiltonian.
The comparison between (2) and (4) shows that the nor-
malized eigenfunctions yp and y] of Hp and H] at ener-

gy E (~ Eot ~ ) are related by

y)(E) =(E —@o) '"Ao yo(E). (5)

V~ —Vo+2(1+1)r —(1+ I ) (1+2)r (7)

The potential V~ behaves as a nonsingular potential with
angular momentum l+ 1. However, the supersymmetry
relation only concerns the radial equation (1) of partial
wave l: It does not modify the angular momentum from
l to 1+1, as is stated in Ref. 15. The correct interpreta-
tion of (7) is that potential V~ is singular. Asymptotical-
ly, the potentials Vp and V] become identical since yp
behaves as exp( —yor) where yo=( —Eo ) '1. Howev-
er, in spite of this similarity, the phase shifts correspond-
ing to the two potentials diAer as shown by application in

(5) of the asymptotic form —d/dr —
yo of Ao [Eq. (3)]

to sin(kr —
—,
' lrc+Bo) (where k =E '1 and 6'o is the phase

shift). The potentials Vo and V~ are not phase
equivalent.

To solve this problem, I associate to H] a supersym-
metric partner H2 with 6] =Ep as separation energy.(p)

Notice that 6'& is now below the ground-state energy
E~t ~ of H~. The function y~(6&) is therefore not square
integrable and behaves asymptotically as exp(+ yor), but
can be chosen regular at r =0. According to the above

Any physical eigenfunction of Hp corresponds to a physi-
cal eigenfunction of H~ with the same eigenvalue, unless
Ao l//o(E) vanishes. Equation (3) shows that (5) is not
valid if E =p =Ep . Therefore, the choice of Dp =Ep
makes the spectrum of H~ identical to the spectrum of
Hp except for the ground state. Other choices of Dp

( ( Eoto~) lead to fully identical spectra.
Let us take Dp=Ep in order to eliminate the ground

state of Hp. The potential corresponding to H~ is given
b 14

V~ =Vo —2d Intro(Eo )/dr . (6)
For small r values, the ground-state wave function

yo (Eo ~ ) behaves as r'+ ' so that one has '

The corresponding potential V2 is given by

V2=Vo —2(d /dr ) In[lyo(Eo')ly (E ')] (10)

V2~ —Vo 2M(21+2M+1)r
—(1+2M) (1+2M+ 1)r (13)

This behavior, which satisfies the generalized Levinson
theorem, " has been recommended and employed by
Michel and Reidemeister ' in their phenomenological
construction of shallow potentials equivalent to the deep
a+ ' 0 potential.

The chain of phase-equivalent potentials is illustrated
by the a+a scattering example in Fig. 1 (in natural
units). In this case, the number of forbidden states is
two for 1=0, one for 1=2, and zero for 1 ~ 4 (Ref. 2).
The starting point is the accurate two-parameter deep
potential of Buck, Friedrich, and Wheatley. The s-wave
potential (denoted as Vo) contains two nonphysical
bound states at —72.8 and —25.9 MeV, and the Be
ground state at 0.092 MeV. I employ relations (6) and

For small r values, y~(A'~) behaves as r +, as shown by
(7); the behavior of V2 is therefore

V2 —Vo+ 2 (21+3)r —(1+2) (1+3)r

Equation (9) implies that the Levinson theorem gives the
same difference 8'(0) —8'(~) for Vo and V2, in spite of
the fact that Vq has one bound state less than Vp. This
property is proved by an extension by Swan" of the
Levinson theorem for potentials presenting the singulari-
ty displayed in Eq. (11).

This two-step method can be iterated until the M non-
physical bound states of the deep potential are removed.
The singular potential V2~ is shallow and its bound
spectrum only contains physical states. Its phase shifts
62~ are identical to Bp. The chain of factorizations of
supersymmetric partners provides a relation between the
wave functions of Hp and H2~ as

y2 (E) =(E"'—2 E) ' . . (E()"' —E)—
+A2M —1A2M —2

' ' A 1 Ao Qo(E).

The potential V2~ is given by an obvious extension of
(10). It behaves for small r values as

2739



VOLUME 58, NUMBER 26 PHYSICAL REVIEW LETTERS 29 JUNE 1987

V (Mev)
'l00

V' (MeV)

10

50
5

0--

—50
—5I

-100

1 2 3 t 5 6 (fm)

-10-

FIG. 1. Chain of a+ a potentials for 1=0, from the deep po-
tential Vo of Buck, Friedrich, and Wheatley (Ref. 4) to the
phase-equivalent shallow potential V4. Potentials equivalent to
Vp are represented by solid lines and auxiliary potentials by
dashed lines. The bound states are represented by horizontal
bars.

(10) to determine numerically the potentials Vt and Vq.

The wave functions yo(Do) and t//1(o t) are computed
with a standard routine of resolution of the Schrodinger
equation (0.01 fm is a typical mesh size). The second-
order derivatives are calculated with a five-point

Lagrange derivation formula. The auxiliary potential VI
(dashed line) contains only the —25.9-MeV bound state
but provides diferent phase shifts. In particular, the Be
ground-state resonance is not reproduced at a correct en-

ergy. Potential V| tends very slowly towards Vo as r be-
comes large. In contrast, V2 has the same spectrum as

Vi but the same phase shifts —and resonance —as Vo.

The phase-equivalent potential V2 is very close to Vo

above 2.5 fm. Notice the repulsive cores of Vi and V2

which are due to their singular behavior [Eqs. (7) and

(11)]. A second iteration eliminates the remaining
bound state and provides the auxiliary potential V3

(which leads to the same phase shifts as Vl) and the po-
tential V4 which is very similar to Vo above 5 fm.
Within the numerical accuracy of the computation, the
phase shifts provided by Vo, V2, and V4 are identical at
all energies.

The potentials V4, V2, and Vo of the 1=0, 2, and 4
partial waves are compared in Fig. 2 with the shallow
a+a potentials d0, d2, and d4 of Ali and Bodmer
(dashed lines). The similarity between the two sets of
potentials is striking. The diff'erences around the minima
are most likely due to the fact that the Ali-Bodmer po-
tentials are not singular but only possess regular repul-
sive cores. The Ali-Bodmer potentials can be considered
as approximate supersymmetric partners of the Buck,
Friedrich, and Wheatley potential.

I have also applied the present technique to the real

FIG. 2. Comparison between the phase-equivalent shallow
potentials (solid lines) and the a+a potentials of Ali and Bod-
mer (Ref. 8) (dashed lines) for / =0,2, 4.

part of the Michel et al. potential. The resulting shal-
low potentials are very close to the potentials presented
in Fig. 2 of Ref. 10.

In summary, supersymmetric quantum mechanics has
been applied to the determination of shallow potentials
which are phase equivalent to deep potentials (actually,
depending on the convention chosen, the phase shifts
may differ by an integer multiple of /r). The shallow po-
tentials are, however, singular and strongly I dependent.
This approach ofIers a rigorous explanation of the phe-
nomenological shallow potentials' based on extensions
of the Levinson theorem. The present approach is exact
and provides differential relations between the wave
functions of the two types of potentials. These relations
should enable one to make detailed comparisons of ma-
trix elements calculated with the two types of wave func-
tions. The present method should be useful for the
clarification of properties such as the origin of parity
dependence in nucleus-nucleus scattering. ' '
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